
The gory details

Recovering deleted files

UNIX file system basics, recap

blocks...

inode 123

.

directory /home/you

foo

bar

and so on...

456

123

owner/group ID

permissions

file/directory/etc.

data block #s

and so on...

data data

data data

data data

application
directories

ffs, ext2fs
vfs

drivers
kernel

blocks

Bypassing the file system layer

.

hardware

files, inodes ils, icat, unrm

Super
block

Inode
bitmap

Data
bitmap

Inode
blocks block

Inode
bitmap

Data
bitmap

Super

Superblock with file system layout (redundant copies)�

Actual inodes/data blocks

�

�

Entire disk, not drawn to scale
Disk label with disk partition layout�

Actual disk partitions�

Label Partition Partition Partition

Bit maps for inode/data block allocation

.

Typical on-disk file system layout

Partition or file system, not drawn to scale

Data
blocks

Inode information for removed files

� Ownership: numeric user and group ID

.

�

�

Type: file, directory, symlink, device, FIFO, socket, etc.

Permissions: read/write/execute for owner, group, other

�

Time stamps:�

last file Modification time�

last file Access time�

last status Change (e.g., owner, permissions, refcount)�

� File size in bytes

List of data block numbers - zeroed (except LINUX)

- zeroed (except LINUX)

- zeroed when removed� Reference count (0, 1, 2 etc.)

�

ils, icat - file access by inode number

�

.

List specific inode(s):

�

�

�

�

Existing and removed files (inode allocated/unallocated):

List removed files (inode unallocated and/or refcount 0):

List removed open files (inode allocated but refcount 0):

ils device

ils -o device

ils -l device

ils device inode...

Access file content by inode number:
icat device inode >file

Part of the toolkit developed for this class

Direct and indirect blocks (FFS)

.

indirect 2

indirect 3

12
. . .

2059
2060
. . .
. . .
. . .

. . .

4196363

indirect 1

indirect 1
. . .

indirect 1

indirect 2

indirect 2
. . .

0

11

indirect 1

. . .inode

Sequential data allocation, ideal case

.

�

� LINUX ext2fs file system: fixed block size 1 kbytes.

� UNIX Fast File System: variable block size 1..8 kbytes.

In reality, FFS spreads large files over clusters of blocks
to avoid fragmentation of files and of free space. LINUX
appears to simply allocate the next free 8 kbyte chunk.

I96 kbyte I 16 Mbyte I 16 Mbyte I 16 Mbyte

12 kbyte I 256 kbyte I I 256 kbyte I 256 kbyte

Extract all removed data blocks

unrm - file system dumpster diving

. Part of the toolkit developed for this class�

� Extract removed data from a range of blocks
unrm device first-last

�

unrm device

� Use icat to exploit Linux removed inode data!

� Output has no indication of file boundaries!

� Output must be redirected to different file system or host!

Stashing data in the

cracks of a UNIX system

executable-file: 12345 bytes excess

Stashing by appending to files

.

Exploit built-in file length information of image files
executable files, etc.

% cat stuff >>executable-file
% cat stuff >>image-file

�

Trivially easy to detect by comparing actual file size�

with built-in length information.

% check_exe executable-file

Exploit ability to store comments inside executable

Stashing by inserting comments

.

or image files, etc.

% wrjpgcom -comment "‘cat stuff‘" file.jpg
% mcs -a "‘cat stuff‘" executable-file

�

Detectable by looking for unusual comments�

(unusual length, unusual content, etc.).

% mcs -p executable-file | whatever
% rdjpgcom filename | whatever

� JPEG supports comment blocks up to 64 kbytes.

�

Stashing by inflating file segments

.

executable files.

� Store data into the code or data segment of

Detectable by analyzing the code segment
and by proving that some code is unreachable.

Detectable by analyzing the code segment
and by proving that some data will never be touched.

Left as an exercise to the reader. See the literature
on the so-called "halting problem".

�

�

Mounting a file system on top of another one.

Stashing - wolf in sheep’s clothes

.

Will resist brute force decryption attacks.

� 3DES-encrypted data inside PGP header.

� PGP-encrypted data inside ZIP header.
Result appears to be a corrupted ZIP file.

Any sufficiently-obscure application-specific format.�

�

Last data block of file (UNIX: 0.5 kbyte, MS: 10+kbytes)

.

Stashing in left-over space

zeros or some trivial pattern.
Detection: this kind of space normally contains

� Media bad block list (10+ kbytes)

� Padding of executable file segments (kbytes)

�

Disk partition boundaries (Mbytes)�

� Unused disk partitions.

�

Wiping data from

a UNIX system

powering off.

A really secure delete takes time

.

overwriting multiple times.

� It is possible to recover data from disk even after

It is possible to recover data from RAM even after

Peter Gutmann, Secure Deletion of Data from Magnetic
and Solid-State Memory, Sixth USENIX Security
Symposium, San Jose, California, July 1996.

�

�

(see article on anonymizing UNIX systems)

Steps to wipe a UNIX system

.

� Wipe files before removing them.

Wipe free space.�

� When shutting down the system:

Wipe swap space.

Wipe memory

�

�

� Wiping software: http://thc.pimmel.com/

Cloning/grafting: use copies of recently-accessed

Grafting to hide effects of wiping

.

All-zero free blocks are unusual and could actually�

�

code, web pages/images, etc.

raise suspicion.

Solution: overwrite free space with plausible data.�

files from the system itself: mail, program source

